Answer:
Force = 18N
Explanation:
Force = [ mass ( final velocity - initial velocity ) ] / time taken
using the formula, here mass is 3 kg, final velocity = 45 m/s , initial velocity = 45 m/s , time taken = 2 seconds
Force = [ 3 ( 45 - 33 ) ] / 2
Force = 18N
Okay. There is a simple formula to go with this where:
p = mv
P: Momentum.
M: Mass.
V: Velocity
Sub the numbers in and solve for M.
10.0 = m(1.5)
10.0/1.5 = m
6.67 kg = m
Therefore the mass of the ball is 6.67kg.
Answer:
(a) the angular velocity at θ1 is 11.64 rad/s
(b) the angular acceleration is 0.12 rad/
(c) the angular position was the disk initially at rest is - 428.27 rad
Explanation:
Given information :
θ1 = 16 rad
θ2 = 76 rad
ω2 = 11 rad/s
t = 5.3 s
(a) The angular velocity at θ1
First, we use the angular motion equation for constant acceleration
Δθ = (ω1+ω2)t/2
θ2 - θ1 = (ω1+ω2)t/2
ω1 + ω2 = 2 (θ2 - θ1) / t
ω1 = (2 (θ2 - θ1) / t ) - ω2
= (2 (76-16) / 5.3) - 11
= 11.64 rad/s
(b) the angular acceleration
ω2 = ω1 + α t
α t = ω2 - ω1
α = (ω2 - ω1)/t
= (11.64 - 11) / 5.3
= 0.12 rad/
(c) the angular position was the disk initially at rest, θ0
at rest ω0 = 0
ω2^2 = ω01 t + 2 α Δθ
2 α Δθ = ω2^2
θ2 - θ0 = ω2^2 / 2 α
θ0 = θ2 - (ω2^2) / 2 α
= 76 - (
/ 2 x 0.12
= 76 - 504.16
= - 428.27 rad
Answer:
If the two waves have the same amplitude and wavelength, then they alternate between ... In fact, the waves are in phase at any integer multiple of half of a period: ... The propagation velocity of the waves is 175 m/s.
Explanation:
please ask me in brainlist ok
Answer:
The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Explanation:
The relationship between energy and wavelength is expressed below:
E = hc/λ
λ = hc/EK - EL
Considering the condition of Bragg's law:
2dsinθ = mλ
For the first order Bragg's law of reflection:
2dsinθ = (1)λ
2dsinθ = hc/EK - EL
d = hc/2sinθ(EK - EL)
Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.
Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)