The solution for this problem is:
If they feel 50% of their weight that means that the
centripetal force is also 50% of their weight 1g - 0.5g = 0.5g
Then 0.5* 9.8m/s² * 18m = 88.2 would be v²
Then get the square root, the answer would be:
and v = 9.391 m/s is the answer.
Its option 3 an object has potential energy
Answer: The volume of gas expands because of the decrease in pressure as he tries to exit the water body, therefore he must take necessary precaution.
Explanation:
Using Boyle's law which states that the the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature
ie P1VI=P2V2
A diver absorbs compressed nitrogen gas when he dives into the water body, As he ascends out of the water body having less pressure, the volume of nitrogen gas which he absorbs will tend to expand following Boyle's Law. Therefore a scuba driver should not rises quickly but slowly to the surface or else the expanding nitrogen gas can cause tiny bubbles in his blood and tissue to form together with joints pains and eventually cause decompression sickness needing medical attention.
Wavelength- <span>distance between successive crests of a wave.
frequency- t</span><span>he rate at which something occurs or is repeated over time.
amplitude-</span><span> maximum extent of a vibration.</span>
Answer:
-0.481 m/s^2
Explanation:
The force equation of this problem is given as:
F - W = ma
where F = upward force holding the clarinet bag
W = downward force (weight of the clarinet)
The mass of the clarinet bag is 3.010 kg, therefore, its weight is:
W = mg
W = 3.010 * 9.8 = 29.498
F = 28.05 N
Therefore:
28.05 - 29.498 = 3.010 * a
-1.448 = 3.010a
=> a = -1.448 / 3.010
a = -0.481 m/s^2
The acceleration of the bag is downward.