Take caution, and slow down, it could run out in the middle of the road. Try going around it if possible.
Answer: 131.75minutes
Explanation:
First if all, we've to find the density of liquid which will be:
= Specific gravity × Density to pure water
= 0.91 × 8.34lb/gallon
= 7.59lb/gallon
Then, the volume that's required to fill the tank will be:
= Load limit/Density of fluid
= 40000/7.59
= 5270.1gallon
Now, the time taken will be:
= V/F
= 5270.1/40
= 131.75min
It'll take 131.75 minutes to fill the tank in the truck.
Answer:

Explanation:
We are given:
m = 1.06Kg

T = 22kj
Therefore we need to find coefficient performance or the cycle


= 5
For the amount of heat absorbed:

= 5 × 22 = 110KJ
For the amount of heat rejected:

= 110 + 22 = 132KJ
[tex[ q_H = \frac{Q_L}{m} [/tex];
= 
= 124.5KJ
Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c
Convert 69.5°c to K we have 342.5K
To find the minimum temperature:
;

= 285.4K
Convert to °C we have 12.4°C
From the refrigerant R -134a table at
= 12.4°c we have 442KPa
Answer:
first is the parentheses, (3+2)=5 next is the exponent 5^2=25, next is the division 5 / 5 = 1, then the multiplication 4*1=4 and then you add 4+25=29. so the answer is 29.
Answer:
B
Explanation:
This is a two sample t-test and not a matched pair t-test
null hypothesis(H0) will be that mean energy consumed by copper rotor motors is greater than or equal to mean energy consumed by aluminium rotor motors
alternate hypothesis(H1) will be that mean energy consumed by copper rotor motors is less than or equal to mean energy consumed by aluminium rotor motors.
So, option D is rejected
The hypothesis will not compare mean of differences of values of energy consumed by copper rotor motor and aluminium rotor motor.
Option A and C are also rejected