(a) The maximum height reached by the ball from the ground level is 75.87m
(b) The time taken for the ball to return to the elevator floor is 2.21 s
<u>The given parameters include:</u>
- constant velocity of the elevator, u₁ = 10 m/s
- initial velocity of the ball, u₂ = 20 m/s
- height of the boy above the elevator floor, h₁ = 2 m
- height of the elevator above the ground, h₂ = 28 m
To calculate:
(a) the maximum height of the projectile
total initial velocity of the projectile = 10 m/s + 20 m/s = 30 m/s (since the elevator is ascending at a constant speed)
at maximum height the final velocity of the projectile (ball), v = 0
Apply the following kinematic equation to determine the maximum height of the projectile.

The maximum height reached by the ball from the ground level (h) = height of the elevator from the ground level + height of he boy above the elevator + maximum height reached by elevator from the point of projection
h = h₁ + h₂ + h₃
h = 28 m + 2 m + 45.87 m
h = 75.87 m
(b) The time taken for the ball to return to the elevator floor
Final height of the ball above the elevator floor = 2 m + 45.87 m = 47.87 m
Apply the following kinematic equation to determine the time to return to the elevator floor.

To learn more about projectile calculations please visit: brainly.com/question/14083704
Answer: Potassium(K)
Explanation:
its an alkali metal placed under sodium and its over rubidium, its also the first element of period 4
<h3><u>Answer;</u></h3>
D) Standing wave
<h3><u>Explanation;</u></h3>
- Standing wave also called stationary wave is a wave which oscillates in time but whose peak amplitude profile does not move in space.
- A standing wave pattern is a vibrational pattern created within a medium when the vibrational frequency of the source causes reflected waves from one end of the medium to interfere with incident waves from the source.
- Examples of standing waves include the vibration of a violin string and electron orbitals in an atom.