Answer:
A. W = 6875.0 J.
B. W = -14264.6 J.
Explanation:
A. The work done by the rider can be calculated by using the following equation:

Where:
: is the force done by the rider = 25 N
d: is the distance = 275 m
θ: is the angle between the applied force and the distance
Since the applied force is in the same direction of the motion, the angle is zero.

Hence, the rider does a work of 6875.0 J on the bike.
B. The work done by the force of gravity on the bike is the following:
The force of gravity is given by the weight of the bike.
And the angle between the force of gravity and the direction of motion is 180°.
The minus sign is because the force of gravity is in the opposite direction to the motion direction.
Therefore, the magnitude of the work done by the force of gravity on the bike is 14264.6 J.
I hope it helps you!
Kinetic energy is energy of motion.
In the cases of a stretched rubber band, water in a reservoir, natural gas, or an object suspended above the ground, everything is just laying there, and nothing is moving. There's nothing there that has kinetic energy.
If there's any wind, then air is moving. The moving air has kinetic energy.
A. The formula for mean free time is:
t = V/(4π√2 r²vN)
where
N = 1×10¹⁶ molecules (per m³)
V = 1 m³
r = 111×10⁻⁷m (atomic radius of silicon)
Let's solve for v first:
v = √(3RT/M) = √(3(8.314 m³·Pa/mol·K)(25 + 273 K)/28.1 g/mol Si)
v = 16.26 m/s
t = (1 m³)/(4π√2 (111×10⁻⁷m)²(16.26 m/s)(1×10¹⁶ molecules))
<em>t = 2.81×10⁻9 s</em>
<em>Pure silicon has a high resistivity relative to copper because copper is a conductor, while silicon is a semi-conductor. </em>
Answer:
19.5°
Explanation:
The energy of the mass must be conserved. The energy is given by:
1) 
where m is the mass, v is the velocity and h is the hight of the mass.
Let the height at the lowest point of the be h=0, the energy of the mass will be:
2) 
The energy when the mass comes to a stop will be:
3) 
Setting equations 2 and 3 equal and solving for height h will give:
4) 
The angle ∅ of the string with the vertical with the mass at the highest point will be given by:
5) 
where l is the lenght of the string.
Combining equations 4 and 5 and solving for ∅:
6) 
Answer:
The magnitude of the magnetic field halfway between the wires is 3.0 x 10⁻⁵ T.
Explanation:
Given;
distance half way between the parallel wires, r = ¹/₂ (40 cm) = 20 cm = 0.2 m
current carried in opposite direction, I₁ and I₂ = 10 A and 20 A respectively
The magnitude of the magnetic field halfway between the wires can be calculated as;

where;
B is magnitude of the magnetic field halfway between the wires
I₁ is current in the first wire
I₂ is current the second wire
μ₀ is permeability of free space
r is distance half way between the wires

Therefore, the magnitude of the magnetic field halfway between the wires is 3.0 x 10⁻⁵ T.