Answer:
(a) Angular velocity will be 125.6 rad/sec
(b) Linear velocity will be 144.44 m /sec
(c) Centripetal acceleration = 1849.3031 g
Explanation:
We have given diameter d = 2.30 m
So radius r =
(a) Speed is given as 1200 rev/min
We know that angular velocity is given by
(b) Linear speed is given by
(c) Centripetal acceleration is given by
We know that
So
Q1. The answer is 8.788 m/s
V2 = V1 + at
V1 - the initial velocity
V2 - the final velocity
a - the acceleration
t - the time
We have:
V1 = 4.7 m/s
a = 0.73 m/s²
t = 5.6 s
V2 = ?
V2 = 4.7 + 0.73 * 5.6
V2 = 4.7 + 4.088
V2 = 8.788 m/s
Q2. The answer is 9.22 s
V2 = V1 + at
V1 - the initial velocity
V2 - the final velocity
a - the acceleration
t - the time
We have:
V2 = 0 (because it reaches a complete stop)
V1 = 4.7 m/s
a = -0.51 m/s²
t = ?
0 = 4.7 + (-0.51)*t
0 = 4.7 - 0.51t
0.51t = 4.7
t = 4.7 / 0.51
t = 9.22 s
Answer: B
Explanation:
Given that an object of mass 2 kg starts from rest and is allowed to slide down a frictionless incline so that its height changes by 20 m.
The parameters given from the question are:
Mass M = 2kg
Height h = 20m
Let g = 9.8m/s^2
At the bottom of the incline plane, the object will experience maximum kinetic energy.
From conservative of energy, maximum K.K.E = maximum P.E
Maximum P.E = mgh
Maximum P.E = 2 × 9.8 × 20 = 392 J
But
K.E = 1/2mv^2
Substitute the values of energy and mass into the formula
392 = 1/2 × 2 × V^2
V^2 = 392
V = sqrt( 392 )
V = 19.8 m/s
V = 20 m/s approximately
Answer:
Acceleration of that planet is 30 .
Given:
initial speed of hammer = 0
time = 1 s
distance = 15 m
To find:
Acceleration due to gravity = ?
Formula used:
Distance covered by hammer is given by,
s = ut +
s = distance
u = initial speed of hammer
t = time taken by hammer to reach ground
a = acceleration
Solution:
Distance covered by hammer is given by,
s = ut +
s = distance
u = initial speed of hammer
t = time taken by hammer to reach ground
a = acceleration
u = 0
t = 1 s
s = 15 m
a = g
Thus substituting these value in above equation.
15 = 0 +
g = 15 × 2
g = 30
Thus, acceleration of that planet is 30 .
The answer is <span>A.)the greenhouse effect
</span>