These gases all have similar properties under standard conditions: they are all odorless, colorless, monatomic gases with very low chemical reactivity. The six noble gases that occur naturally are helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), and Radon (Rn).
None, because molecules are a group of two (or more) electrically bonded atoms. But there are gases not bonded due to their stability.
Answer:
A.)neutral
because their ions have equal and opposite charges whose resultant charge is zero
Reaction type : Double-Replacement reactions
<h3>Further explanation</h3>
Given
Reaction
MgCl2 +
Li2CO3 →
MgCO3 +
LiCl
Required
Balanced equation
Reaction type
Solution
Balanced equation
Li2CO3 (s) + MgCl2 (aq) → MgCO3 (s) + 2 LiCl (aq)
Double-Replacement reactions. Happens if there is an ion exchange between two ion compounds in the reactant to form two new ion compounds in the product
To predict whether this reaction can occur or not is one of them, the precipitation reaction.
MgCO3 is a precipitation compound
Answer:
1) thiamine pyrophosphate -activation of aldehydes
2) coenzyme A -acyl group transfer
3) biotin -CO2 activation/transfer
4) NAD -oxidation/reduction
Explanation:
1. Thiamine pyrophosphate: This is a derivative of Vitamin B1 also known as thiamine. It contains a pyrimidine group linked to the thiazole ring. This connection is further linked to the pyrophosphate group. It functions as a coenzyme in all reactions involving alpha-keto acids. This produces activated aldehydes that could be subject to oxidation.
2. Coenzyme A: This cofactor is a thiol that reacts with carboxylic acids to form thioesters. In so doing, it carries the acyl group. In this condition, it can also be referred to as acyl CoA.
3. Biotin: Also known as Vitamin B7, biotin consists of an ureido ring merged with tetrahydrothiophene. The ureido ring contains the CO2 that can be transferred or activated. Five carboxylase enzymes use biotin as a cofactor in processes such as fat synthesis, glucose generation and the breakdown of sugar.
4. NAD: Nicotinamide adenine dinucleotide consists of two dinucleotides connected to each other at their phosphate groups. NAD exists in two states which are the NAD+ and NADH states. These two states serve as oxidizing and reducing agents respectively. The oxidizing agent becomes reduced to NADH after accepting electrons from other compounds. NADH donates an electron and becomes oxidized to NAD+.