How much work in J does the string do on the boy if the boy stands still?
<span>answer: None. The equation for work is W = force x distance. Since the boy isn't moving, the distance is zero. Anything times zero is zero </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m away from the kite? </span>
<span>answer: might be a trick question since his direction away from the kite and his velocity weren't noted. Perhaps he just set the string down and walked away 11m from the kite. If he did this, it is the same as the first one...no work was done by the sting on the boy. </span>
<span>If he did walk backwards with no velocity indicated, and held the string and it stayed at 30 deg the answer would be: </span>
<span>4.5N + (boys negative acceleration * mass) = total force1 </span>
<span>work = total force1 x 11 meters </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m toward the kite? </span>
<span>answer: same as above only reversed: </span>
<span>4.5N - (boys negative acceleration * mass) = total force2 </span>
<span>work = total force2 x 11 meters</span>
<u>Latent hea</u>t is related to changes in phase between liquids ,gases and solids.
<u>Sensible heat</u> is related to changes in temperature of a gas or object with no change in phase.
Infrared, visible light, then ultraviolet. Infrared is light that the human eye can not see and visible light is clearly light we can see then ultraviolet is has such a high frequency we can't see it either.
Answer:
We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Explanation:
Given
To determine
Kinetic Energy (K.E) = ?
We know that a body can possess energy due to its movement — Kinetic Energy.
Kinetic Energy (K.E) can be determined using the formula

where
- K.E is the Kinetic Energy (J)
now substituting m = 1.75, and v = 54 in the formula



J
Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Explanation:
an electrical load is the part of an electrical circuit in which current is transformed into something useful. examples include a lightbulb, a resistor and a motor. a load converts electricity into heat, light or motion. put another way, the part of a circuit that connects to a well-defined output terminal is considered an electrical load.