Answer:
The height is the same
Explanation:
Because they were at the same height but they fell at different velocities
Answer:
B) Angular velocity
Explanation:
The equivalent of Newton's second law for the rotational motions can be written as:

where
is the net torque applied to the object
I is the moment of inertia
is the angular acceleration
From the formula we see that when a constant net torque
is applied, then the object also has a constant angular acceleration,
.
But we also know that

where
is the angular velocity: so, a constant angular acceleration means that the angular velocity of the object is changing, so the correct answer is
B) Angular velocity
(moment of inertia and center of gravity do not change since they only depend on the mass and the geometry/shape of the object, which do not change)
Answer:
The ball doesn't strike the building because it strikes the ground at d=1.62 meters.
Explanation:
V= 5 m/s < 70º
Vx= 1.71 m/s
Vy= 4.69 m/s
h= Vy * t - g * t²/2
clearing t for the flying time of the ball:
t= 0.95 s
d= Vx * t
d= 1.62 m
Answer:
Tension in the chains - In a chain drive, technically, you have a closed-chain (which has no end) going around 2 pulley or gears; looking closely you have 2 parallel chains going in opposite direction. If kept in horizontal direction, the one below the other is the slack side and the other the tight side. The tension on the upper or tight side is more than the slack side. So you need to keep in mind to keep your chain drive tight so that there is no loss or rotation or lags.
Sizes of the pulley/gear - The chain will be warped around a pair of pulley or gear. The sizes of these pulley/gear will also determine the efficiency of the chain drive (consider one big and one small)
Number of pulley/gear - If the number of pulley/gear is more and chain wrapped on it with little complexity will result in decrease in efficiency because of extra tension.
Length of the chain drive - You cannot have much too long chain drive. It will make your slack side more heavy because the end are further away. You have to apply more power and possibilities of lag increases decreasing efficiency. In an ideal situation, this won't happen, but this world isn't ideal.
Friction between chains & pulley/gear - If you have studied gears (involving its teeth), you will come to know that there is friction offered on the two meeting surfaces.
Angle of contact - This would have been explained better with a diagram. Although, if you are familiar with the terms you won't have difficulty understanding. Angle of contact is the angle the chain forms with the pulley/gear at the point of contact with the center of the pulley. The angle of contact should not be too small, or else the things will be slippery.
Explanation:
The answer is 17 m because you have to add the 15 m and the 8 m together to get the answer so it will be like this 17x17 = 15x15 + 8x8 got it?