It's 12.1 m/s, assuming that's the launch velocity that's given.
For projectile motion, velocity's y-component is parabolic/quadratic. It's x-component is constant, so you don't need to know it.
Answer:
- 2.7 x 10^-6 J
Explanation:
q1 = 1 nC at x = 0 cm
q2 = - 1 nC at x = 1 cm
q3 = 4 nC at x = 2 cm
The formula for the potential energy between the two charges is given by

where r be the distance between the two charges
By use of superposition principle, the total energy of the system is given by



U = - 2.7 x 10^-6 J
Answer:
If you're talking about the sun than:
Time, Distance and Shielding Time, distance, and shielding actions minimize your exposure to radiation in much the same way as they would to protect you against overexposure to the sun:
If you're talking about the ocean than:
Water safety precautions for teens and young adults:
Never go into the water if you can’t swim.
If you can’t swim, learn. Any age can receive swimming lessons.
Always wear a life jacket while boating or taking part in boating activities such as tubing or skiing.
Never swim alone or in an unsupervised area.
Know your swimming strength.
Don’t rough house around water. Never push, jump on or hang on to others in or around water.
Never drink alcohol while taking part in water or boating activities. Alcohol affects your motor skills therefore making it harder to swim, float, keep balance or drive.
Explanation:
Answer:
<em>d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
Explanation:
Let us take the momentum of a photon unit as u
we know that the rate of change of momentum is proportional to the force exerted.
For a absorbing surface, the photon is absorbed, therefore the final momentum is zero. From this we can say that
F = (u - 0)/t = u/t
for a unit time, the force is proportional to the momentum of the wave due to its energy density. Therefore,
F = u
For a reflecting surface, the momentum of the wave strikes the sail and changes direction. Since we know that the speed of light does not change, then the force is proportional to
F = (u - (-u))/t = 2u/t
just as the we did above, it becomes
F = 2u.
From this we can see that the force for a reflective sail is twice of that for an absorbing sail, and we know that the pressure is proportional to the force for a given area. From these, we conclude that <em>the sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
A green liquid becoming a red liquid