Answer:
Explanation:
Apply the law of conservation of energy

![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
from the law of conservation of the linear momentum

Therefore,
![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
![=\frac{1}{2} [m_1v_1^2+m_2[\frac{m_1v_1}{m_2} ]^2]\\\\=\frac{1}{2} [m_1v_1^2+\frac{m_1^2v_1^2}{m_2} ]\\\\=\frac{m_1v_1^2}{2} [\frac{m_1+m_2}{m_2} ]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2Bm_2%5B%5Cfrac%7Bm_1v_1%7D%7Bm_2%7D%20%5D%5E2%5D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2B%5Cfrac%7Bm_1%5E2v_1%5E2%7D%7Bm_2%7D%20%5D%5C%5C%5C%5C%3D%5Cfrac%7Bm_1v_1%5E2%7D%7B2%7D%20%5B%5Cfrac%7Bm_1%2Bm_2%7D%7Bm_2%7D%20%5D)
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
Substitute the values in the above result
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
![=[\frac{2(6.67\times 10^-^1^1)(107)^2}{27+107} ][\frac{1}{26} -\frac{1}{41}] \\\\=1.6038\times 10^-^1^0\\\\v_1=\sqrt{1.6038\times 106-^1^0} \\\\=1.2664 \times 10^-^5m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B2%286.67%5Ctimes%2010%5E-%5E1%5E1%29%28107%29%5E2%7D%7B27%2B107%7D%20%5D%5B%5Cfrac%7B1%7D%7B26%7D%20-%5Cfrac%7B1%7D%7B41%7D%5D%20%5C%5C%5C%5C%3D1.6038%5Ctimes%2010%5E-%5E1%5E0%5C%5C%5C%5Cv_1%3D%5Csqrt%7B1.6038%5Ctimes%20106-%5E1%5E0%7D%20%5C%5C%5C%5C%3D1.2664%20%5Ctimes%2010%5E-%5E5m%2Fs)
B) the speed of the sphere with mass 107.0 kg is

\\\\=3.195\times 10^-^6m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B27%7D%7B107%7D%20%5D%281.2664%20%5Ctimes%2010%5E-%5E5%29%5C%5C%5C%5C%3D3.195%5Ctimes%2010%5E-%5E6m%2Fs)
C) the magnitude of the relative velocity with which one sphere is

D) the distance of the centre is proportional to the acceleration

Thus,

and

When the sphere make contact with eachother
Therefore,

And

The point of contact of the sphere is

Velocity change v time because ACCELERATION=CHANGE IN VELOCITY/TIME
Answer:
The distance of separation is decreased
Explanation:
From Cuolomb's law, we know that the strength of charge is inversely proportional to the distance of separation between the charges. To mean that increasing the distance let's say from 2m to 3 m would mean initial strength getting form 1/4 to 1/9 which is a decrease. The vice versa is true hence the force of repulsion can increase only when we decrease the distance of separation.
I think that the oceanic water particles mainly move in circles greater in the oceans surface because of how big the waves can be and how wind and air impact the motion. The water particles move more on the surface because of the other factors that impact it such as people, wind, air, etc...
Answer: NNOOOOOOOOOOOOOOOOOOONONONO
Explanation: simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side. The time interval of each complete vibration is the same. The force responsible for the motion is always directed toward the equilibrium position and is directly proportional to the distance from it. That is, F = −kx, where F is the force, x is the displacement, and k is a constant. This relation is called Hooke’s law.
A specific example of a simple harmonic oscillator is the vibration of a mass attached to a vertical spring, the other end of which is fixed in a ceiling. At the maximum displacement −x, the spring is under its greatest tension, which forces the mass upward. At the maximum displacement +x, the spring reaches its greatest compression, which forces the mass back downward again. At either position of maximum displacement, the force is greatest and is directed toward the equilibrium position, the velocity (v) of the mass is zero, its acceleration is at a maximum, and the mass changes direction. At the equilibrium position, the velocity is at its maximum and the acceleration (a) has fallen to zero. Simple harmonic motion is characterized by this changing acceleration that always is directed toward the equilibrium position and is proportional to the displacement from the equilibrium position. Furthermore, the interval of time for each complete vibration is constant and does not depend on the size of the maximum displacement. In some form, therefore, simple harmonic motion is at the heart of timekeeping.