Answer:
B
Explanation:
bonding is a process of two different atoms sharing electrons for stability and these electrons are attracted by one atom losing it's electrons to another
The concentration is 5 g/L.
Concentration = mass/volume = 10 g/2 L = 5 g/L
A. Decomposing water requires a high activation energy.
Explanation:
In decomposing water to release hydrogen gas to make fuel cells, the process requires a very high activation energy.
2H₂O ⇆ 2H₂ + O₂
This is the overall reaction. O-H must be broken to release free hydrogen to produce hydrogen gas.
The O-H bond is a very strong force of attraction that requires a high activation energy to overcome.
- The activation energy is the energy barrier that must be overcome before a reaction takes place.
- The sun is a renewable source of energy.
- Water decomposition produces useful oxygen gas needed by all life for cellular respiration.
Learn more:
Source of energy brainly.com/question/2948717
#learnwithBrainly
Answer: option <span>A) increases from bottom to top within the group.
Explanation:
</span>It is a known trend that the metallic character of the elements increase from let to right and from top to bottom.
The greater the metallic character the greater the reactivity of the metal.
So, the elements of the columns 1 and 2 are the most reactive metals and among them the elements at the bottom are yet more reactive.
<span>The higher reactivity of the metals that are lower in the periodic table is attributed to the greater total number of electrons.
The greater the total number of electrons the more reactive the metals
as their outermost electrons (the valence electrons which are those that react) are located further from the nucleus and therefore they are held less
strongly, which makes them react more easily.</span>
Balanced chemical reaction:
MgSO₄(aq) + Sr(NO₃)₂(aq) → Mg(NO₃)₂(aq) + SrSO₄(s).
Ionic reaction:
Mg²⁺(aq) + SO₄²⁻(aq) + Sr²⁺(aq) + 2NO₃⁻(aq) → Mg²⁺(aq) + 2NO₃⁻(aq) + SrSO₄(s).
Net ionic reaction:
Sr²⁺(aq) + SO₄²⁻(aq) → SrSO₄(s).
Magnesium sulfate (MgSO₄), strontium nitrate (Sr(NO₃)₂ and magnesium nitrate (Mg(NO₃)₂) are soluble in water. Strontium sulfate (SrSO₄) is not soluble in water.
This chemical reaction is double displacement reaction - cations and anions of the two reactants switch places and form two new compounds.