Answer:
Any substance which occupies space and has mass is known as matter. States of matter: Matter exist in three different states that are Solid, Liquid and Gas. Matter is made up of very small particles
Explanation:
We have to complete all the given reactions.
1. Fe(s) + CuCl₂ → Cu + FeCl₂
2. Cu(s) + FeCl₂(aq) → NR (no reaction takes place)
3. K(s) + NiBr2(aq) → NR (no reaction takes place)
4. Ni(s) + KBr(aq) → K + NiBr₂
5. Zn(s) + Ca(NO₃)₂(aq) → NR (no reaction)
6. Ca(s) + Zn(NO₃)₂(aq) → Zn(s) + Ca(NO₃)₂(aq)
<span>the balanced equation for the reaction is as follows
Na</span>₂<span>SO</span>₄<span> + BaCl</span>₂<span> ----> 2NaCl + BaSO</span>₄
<span>stoichiometry of Na</span>₂<span>SO</span>₄<span> to BaCl</span>₂<span> is 1:1
first we need to find out which the limiting reactant is
limiting reactant is fully used up in the reaction.
number of Na2So4 moles - 0.5 mol number of BaCl2 moles - 60 g / 208 g/mol = 0.288 mol
since molar ratio is 1:1 equal number of moles of both reactants should react with each other
therefore BaCl2 is the limiting reactant and Na2SO4 is in excess. amount of product formed depends on number of limiting reactant present.
stoichiometry of BaCl</span>₂<span> to BaSO</span>₄<span> is 1:1.
therefore number of BaSO4 moles formed - 0.288 mol</span>
The answer is
<span>2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g)
Your answer is not yet balanced because you have 3 oxygen atoms. it should be balanced by multiplying both side by 2 such as the balanced equation I made. To check it, I will explain why your answer is not yet balanced.
check: (from your equation)
</span> 1-Pb-1
1-S-1
2 -O-3
the difference between the reactant and the product of Oxygen will prove that it is not yet balanced.
If you use 2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g), to check it:
2-Pb-2
2-S-2
6 -O-6
then this is now balance