Answer:
Ionic or Electrovalent Bonding
Explanation:
There are primarily two categories of bonding between chemical entities. We have; Ionic Bonding and Covalent Bonding.
Ionic bonding or electrovalent bonding is the complete transfer of valence electron(s) between atoms. There is the transfer of electron from typically a metal to a non metal.
Covalent Bonding however involves the sharing of electrons between atoms. Depending on whuch atoms provide the electrons, it can be ordinary covalent oor coordinate covelent bond.
Answer:
A = 2
B = 1
Explanation:
The atomic number of lithium is 3.
Its atomic mass is 7 amu.
It is present in group group 1.
It has one valance electron.
Lithium is alkali metal it form salts.
It is silvery soft metal. It has lowest density as compared to all other metals.
It react vigorously with water.
It is used in rechargeable batteries which are used in camera, mobile, laptops etc.
The electronic configuration of Li:
Li₃ = 1s² 2s¹
Thus,
A = 2
B = 1
Answer:
d. 60.8 L
Explanation:
Step 1: Given data
- Heat absorbed (Q): 53.1 J
- External pressure (P): 0.677 atm
- Final volume (V2): 63.2 L
- Change in the internal energy (ΔU): -108.3 J
Step 2: Calculate the work (W) done by the system
We will use the following expression.
ΔU = Q + W
W = ΔU - Q
W = -108.3 J - 53.1 J = -161.4 J
Step 3: Convert W to atm.L
We will use the conversion factor 1 atm.L = 101.325 J.
-161.4 J × 1 atm.L/101.325 J = -1.593 atm.L
Step 4: Calculate the initial volume
First, we will use the following expression.
W = - P × ΔV
ΔV = - W / P
ΔV = - 1.593 atm.L / 0.677 atm = 2.35 L
The initial volume is:
V2 = V1 + ΔV
V1 = V2 - ΔV
V1 = 63.2 L - 2.35 L = 60.8 L
<span>Amino acids which are known to be linked by peptide bonds they form polypeptide chains.
Proteins are linear polymers are formed by way of linking an a-carboxy group of one amino acid to a-amino of different amino acids which have peptide bond. The formation which results from two amino acids which result in a loss of a water molecule. The best process of the reaction is hydrolysis.</span>