Answer:
Manganese
Explanation:
Using rules you will find the location on 3d^5 because you subtract one level when in the d block
Answer:
Vegetable oil will dissolve in heptane
Isopropyl alcohol will dissolve in water
Potassium Bromide will dissolve in water
Explanation:
In chemistry, like dissolves like. This implies that polar substances will dissolve in polar solvents and nonpolar substances will dissolve in nonpolar solvents. This is so because, dissolution of a solute in a solvent involves adequate intermolecular interaction between solute and solvent which isn't possible between a polar and a nonpolar substance.
A Brønsted-Lowry acid is defined as a compound that gives hydronium ions to another compound—for example, hydrochloric acid gives H+ ions to compounds it reacts with. Brønsted-Lowry bases are compounds that can accept hydronium ions—when ammonia gets a hydronium ion from HCl, it forms the ammonium ion.
Answer:
The value is 
Explanation:
From the question we are told that
The equation is 
The temperature is ![T = 25^oC = 298 K [room \ temperature ]](https://tex.z-dn.net/?f=%20T%20%3D%2025%5EoC%20%3D%20%20298%20K%20%20%20%5Broom%20%20%5C%20temperature%20%5D)
The emf at standard condition is 
Generally at the cathode

At the anode

Generally for an electrochemical reaction, at room temperature the Gibbs free energy is mathematically represented as

Here n is the no of electron with value n = 6
F is the Faraday's constant with value 96487 J/V
=>
=> 
This Gibbs free energy can also be represented mathematically as

Here R is the cell constant with value 8.314J/K
K is the equilibrium constant
From above
=> 
Generally antilog = 2.718
=>
=> 
Answer:
Kc = 0.075
Explanation:
The dissociation (α) is the initial quantity that ionized divided by the total dissolved. So, let's calling x the ionized quantity, and M the initial one:
α = x/M
x = M*α
x = 0.354M
For the stoichiometry of the reaction (2:1:1), the concentration of H₂ and I₂ must be half of the acid. So the equilibrium table must be:
2HI(g) ⇄ H₂(g) + I₂(g)
M 0 0 <em> Initial</em>
-0.354M +0.177M +0.177M <em>Reacts</em>
0.646M 0.177M 0.177M <em>Equilibrium</em>
The equilibrium constant Kc is the multiplication of the products' concentrations (elevated by their coefficients) divided by the multiplication of the reactants' concentrations (elevated by their coefficients):
![Kc = \frac{[H2]*[I2]}{[HI]^2}](https://tex.z-dn.net/?f=Kc%20%3D%20%5Cfrac%7B%5BH2%5D%2A%5BI2%5D%7D%7B%5BHI%5D%5E2%7D)


Kc = 0.075