Answer:
Follow these steps.
1. Fill the matchbox with pebbles. Weigh the matchbox with the pebbles inside. Record that weight.
2. Tie the string to the box. Allow the string to hang over the edge of the table.
3. Tie the other end of the string to a corner of the plastic bag, leaving an opening to put in coins.
4. Add coins one by one until the box is pulled off the table.
5. Count and record the number of coins and the weight of the bag with the coins in it.
6. Lay the round sticks on the table about 1 inch apart and about 2 inches from the edge of the table.
7. Put the matchbox on the rollers farthest from the edge of the table.
8. Now add coins one by one to the bag until the box is pulled off the table.
9. Count and record the number of coins and the weight of the bag with the coins in it.
10. Repeat the experiment. Determine your margin of error if your results vary. For accuracy, repeat the experiment if desired.
11. Using the equation for the coefficient of friction in the text above, determine the coefficient of friction for the matchbox in each experiment. Include this data in your summary.
Explanation:
I think this is useful
please make me as breainlest
Answer:
Structural
Explanation:
Isomerism is the existence of two or more compounds with the same molecular formula but different molecular structures due to the difference in the arrangement of atoms or spatial orientation of atoms.
Isomers have the same molecular formula but differs in their structural arrangement.
In organic chemistry, Isomerism can orginate from different arrangement of atoms.
It can be carbon chain length known as chain isomerism. Here, the carbon length is changed and arranged in different ways.
We can also have position isomerism which entails the position of the functional group in the structure.
It can also be functional group isomerism which deals with the possible arrangement of the group on the chain.
Answer:
2.881x10^23 atoms
Explanation:
From the studies of Avogadro's hypothesis, we discovered that 1mole of any substance contains 6.02x10^23 atoms.
Therefore 1mole of Fe contains 6.02x10^23 atoms.
Molar Mass of Fe = 56g/mol
56g of Fe contains 6.02x10^23 atoms.
Therefore, 26.8g of Fe will contain = (26.8x6.02x10^23) / 56 = 2.881x10^23 atoms
The reaction involved in this problem is called the combustion reaction where a hydrocarbon reacts with oxygen to product carbon dioxide and water. The reaction of C2H5OH would be as follows:
C2H5OH + 3O2 = 2CO2 + 3H2O
To determine the number of molecules of CO2 that is formed, we need to determine the number of moles produced from the initial amount of C2H5OH and the relation from the reaction. Then we multiply avogadros number which is equal to 6.022x10^23 molecules per mole.
2.00 g C2H5OH ( 1 mol C2H5OH / 46.08 g C2H5OH ) ( 2 mol CO2 / 1 mol C2H5OH ) = 0.0868 mol CO2
0.0868 mol CO2 ( 6.022x10^23 molecules / mol ) = 5.23x10^22 molecules CO2