1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
3 years ago
9

¿Por qué creen que la Ingeniería Metalúrgica es una carrera estratégica para el desarrollo de nuestro país?

Engineering
1 answer:
galina1969 [7]3 years ago
6 0

Answer:

La ingeniería metalúrgica implica el desarrollo de sistemas de producción industrial a través del desarrollo de distintas aleaciones de metales, mediante los cuales se generan componentes minerales específicos que hacen al desarrollo de nuevos metales de mayor calidad y eficacia en la producción industrial, la construcción, el desarrollo de maquinarias, etc.

Este tipo de ingeniería es una carrera estratégica para el desarrollo económico de las naciones, pues permite la creación de industrias mas eficientes, productos de mejor calidad y un mayor desarrollo del comercio a través de lo producido por las distintas fábricas del país, generando directa e indirectamente ingresos económicos para la nación.

You might be interested in
According to OSHA standards, the air in the building that John works in is unsafe. The type of regulation that OSHA engages in i
ioda

Answer:

social regulation.

Explanation:

Social regulation are rules set aside to protect the environment or restrain activities that poses threat to public health and safety, examples includes environment pollution which includes lands, air, water etc, unhealthy work environment, etc. This rules identify activities that are allowed or under sanction for individuals, firms and government, breaking this rules most times comes with heavy fines or sanctions.

Social regulation help to see to the safety and well being of our environment, it serves as a guide for human activities.

7 0
3 years ago
Read 2 more answers
Exceeding critical mach may result in the onset of compressibility effects such as:______.
klio [65]

Answer:

Sound barrier.

Explanation:

Sound barrier is a sudden increase in drag and other effects when an aircraft travels faster than the speed of sound. Other undesirable effects are experienced in the transonic stage, such as relative air movement creating disruptive shock waves and turbulence. One of the adverse effect of this sound barrier in early plane designs was that at this speed, the weight of the engine required to power the aircraft would be too large for the aircraft to carry. Modern planes have designs that now combat most of these undesirable effects of the sound barrier.

4 0
3 years ago
Define the coefficient of determination and discuss the impact you would expect it to have on your engineering decision-making b
scoundrel [369]

Answer and Explanation:

The coefficient of determination also called "goodness of fit" or R-squared(R²) is used in statistical measurements to understand the relationship between two variables such that changes in one variable affects the other. The level of relationship or the degree to which one affects the other is measured by 0 to 1 whereby 0 means no relationship at all and 1 means one totally affects the other while figures in between such 0.40 would mean one variable affects 40% of the other variable.

In making a decision as an engineer while using the coefficient of determination, one would try to understand the relationship between variables under consideration and make decisions based on figures obtained from calculating coefficient of determination. In other words when there is a 0 coefficient then there is no relationship between variables and an engineer would make his decisions with this in mind and vice versa.

7 0
3 years ago
A stationary gas-turbine power plant operates on a simple ideal Brayton cycle with air as the working fluid. The air enters the
ololo11 [35]

Answer:

A) W' = 15680 KW

B) W' = 17113.87 KW

Explanation:

We are given;

Temperature at state 1; T1 = 290 K

Temperature at state 3; T3 = 1100 K

Rate of heat transfer; Q_in = 35000 kJ/s = 35000 Kw

Pressure of air into compressor; P_c = 95 kPa

Pressure of air into turbine; P_t = 760 kPa

A) The power assuming constant specific heats at room temperature is gotten from;

W' = [1 - ((T4 - T1)/(T3 - T2))] × Q_in

Now, we don't have T4 and T2 but they can be gotten from;

T4 = [T3 × (r_p)^((1 - k)/k)]

T2 = [T1 × (r_p)^((k - 1)/k)]

r_p = P_t/P_c

r_p = 760/95

r_p = 8

Also,k which is specific heat capacity of air has a constant value of 1.4

Thus;

Plugging in the relevant values, we have;

T4 = [(1100 × (8^((1 - 1.4)/1.4)]

T4 = 607.25 K

T2 = [290 × (8^((1.4 - 1)/1.4)]

T2 = 525.32 K

Thus;

W' = [1 - ((607.25 - 290)/(1100 - 525.32))] × 35000

W' = 0.448 × 35000

W' = 15680 KW

B) The power accounting for the variation of specific heats with temperature is given by;

W' = [1 - ((h4 - h1)/(h3 - h2))] × Q_in

From the table attached, we have the following;

At temperature of 607.25 K and by interpolation; h4 = 614.64 KJ/K

At T3 = 1100 K, h3 = 1161.07 KJ/K

At T1 = 290 K, h1 = 290.16 KJ/K

At T2 = 525.32 K, and by interpolation, h2 = 526.12 KJ/K

Thus;

W' = [1 - ((614.64 - 290.16)/(1161.07 - 526.12))] × 35000

W' = 17113.87 KW

4 0
3 years ago
Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of subst
Kaylis [27]

Answer:

The specific heat capacity of substance A is 1.16 J/g

Explanation:

The substances A and B come to a thermal equilibrium, therefore, the heat given by the hotter substance B is absorbed by the colder substance A.

The equation becomes:

Heat release by Substance B = Heat Gained by Substance A

The heat can be calculated by the formula:

Heat = mCΔT

where,

m = mass of substance

C = specific heat capacity of substance

ΔT = difference in temperature of substance

Therefore, the equation becomes:

(mCΔT) of A = (mCΔT) of B

<u>FOR SUBSTANCE A:</u>

m = 6.01 g

ΔT = Final Temperature - Initial Temperature

ΔT = 46.1°C - 20°C = 26.1°C

C = ?

<u>FOR SUBSTANCE B:</u>

m = 25.6 g

ΔT = Initial Temperature - Final Temperature

ΔT = 52.2°C - 46.1°C = 6.1°C

C = 1.17 J/g

Therefore, eqn becomes:

(6.01 g)(C)(26.1°C) = (25.6 g)(1.17 J/g)(6.1°C)

C = (182.7072 J °C)/(156.861 g °C)

<u>C = 1.16 J/g</u>

5 0
3 years ago
Other questions:
  • Are engineers needed in today’s society ? Why or why not ? I need a short three paragraph essay !!! Please help me !!!
    13·1 answer
  • What is 1000 kJ/sec in watts?
    10·1 answer
  • Give four effects of water hammer.​
    6·1 answer
  • Extra Credit: The Linc (parking lot and stadium)In celebration of the upcoming Super Bowl, for a maximum 10 points of extra cred
    7·1 answer
  • Which option distinguishes the members of a software deployment process team most likely involved in the following scenario?
    7·1 answer
  • one number is 11 more than another number. find the two number if three times the larger number exceeds four times the smaller n
    14·1 answer
  • Code for XOR with two input logic gate
    8·1 answer
  • What is the name of the type of rocker arm stud that does not require a valve adjustment?
    12·1 answer
  • Which type of system is being researched to deliver power to several motors to drive multiple systems in vehicles?
    10·1 answer
  • What are the horizontal structures beneath a slab that help transfer the load from the slab to the columns?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!