dude thx for the points lol
Answer:
1.2727 stokes
Explanation:
specific gravity of fluid A = 1.65
Dynamic viscosity = 210 centipoise
<u>Calculate the kinematic viscosity of Fluid A </u>
First step : determine the density of fluid A
Pa = Pw * Specific gravity = 1000 * 1.65 = 1650 kg/m^3
next : convert dynamic viscosity to kg/m-s
210 centipoise = 0.21 kg/m-s
Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A
= 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec
Convert to stokes = 1.2727 stokes
Answer and Explanation:
The DC motor has coils inside it which produces magnetic field inside the coil and due to thus magnetic field an emf is induced ,this induced emf is known as back emf. The back emf always acts against the applied voltage. It is represented by 
The back emf of the DC motor is given by
Here N is speed of the motor ,P signifies the number of poles ,Z signifies the the total number of conductor and A is number of parallel paths
As from the relation we can see that back emf and speed ar dependent on each other it means back emf limits the speed of DC motor