Answer:
A) 1059 J/mol
B) 17,920 J/mol
Explanation:
Given that:
Cp = 29.42 - (2.170*10^-3 ) T + (0.0582*10^-5 ) T2 + (1.305*10^-8 ) T3 – (0.823*10^-11) T4
R (constant) = 8.314
We know that:

We can determine
from above if we make
the subject of the formula as:




A).
The formula for calculating change in internal energy is given as:

If we integrate above data into the equation; it implies that:



Hence, the internal energy that must be added to nitrogen in order to increase its temperature from 450 to 500 K = 1059 J/mol.
B).
If we repeat part A for an initial temperature of 273 K and final temperature of 1073 K.
then T = 273 K & T2 = 1073 K
∴



Y : CCP : 4 atoms
X : tetrahedral voids would be 1/3 × 8 = 8/3
so formula would be Y12X8 or Y3X2 !!
Answer:
D) the carbon with the low-energy phosphate on it in 1,3 BPG is labeled.
Explanation:
Glycolysis has 2 phase (1) preparatory phase (2) pay-off phase.
<u>(1) Preparatory phase</u>
During preparatory phase glucose is converted into fructose-1,6-bisphosphate. Till this time the carbon numbering remains the same i.e. if we will label carbon at 6th position of glucose, its position will remian the same in fructose-1,6-bisphosphate that means the labeled carbon will still remain at 6th position.
When fructose-1,6-bisphosphate is further catalyzed with the help of enzyme aldolase it is cleaved into two 3 carbon intermediates which are glyceraldehyde 3-phosphate (GAP) and dihyroxyacetone phosphate (DHAP). In this conversion, the first three carbons of fructose-1,6-bisphosphate become carbons of DHAP while the last three carbons of fructose-1,6-bisphosphate will become carbons of GAP. It simply means that GAP will acquire the last carbon of fructose-1,6-bisphosphate which is labeled. Now the last carbon of GAP which has phosphate will be labeled.
<u>(2) Pay-off phase</u>
During this phase, GAP is dehydrogenated into 1,3-bisphosphoglycerate (BPG) with the help of enzyme glyceraldehyde 3-phosphate dehydrogenase. This oxidation is coupled to phosphorylation of C1 of GAP and this is the reason why 1,3-bisphosphoglycerate has phosphates at 2 positions i.e. at position 1 in which phosphate is newly added and position 3rd which already had labeled carbon.
It is pertinent to mention here that<u> BPG has a mixed anhydride and the bond at C1 is a very high energy bond.</u> In the next step, this high energy bond is hydrolyzed into a carboxylic acid with the help of enzyme phosphoglycerate kinase and the final product is 3-phosphoglycerate. Hence, the carbon with low energy phosphate i.e. the carbon at 3rd position remains labeled.
C.) wash hands, utensils, and surfaces with hot soapy water
Increase at the temperature