Answer:
V₂ → 106.6 mL
Explanation:
We apply the Ideal Gases Law to solve the problem. For the two situations:
P . V = n . R . T
Moles are still the same so → P. V / R. T = n
As R is a constant, the formula to solve this is: P . V / T
P₁ . V₁ / T₁ = P₂ .V₂ / T₂ Let's replace data:
(1.20 atm . 73mL) / 112°C = (0.55 atm . V₂) / 75°C
((87.6 mL.atm) / 112°C) . 75°C = 0.55 atm . V₂
58.66 mL.atm = 0.55 atm . V₂
58.66 mL.atm / 0.55 atm = V₂ → 106.6 mL
Answer: Mixtures do not have the same composition, properties, and appearance throughout.
Explanation: It does not vary from sample to sample.
Covalent bond is a type of chemical bond which is formed as a result of sharing of electron pairs among the elements that are involved. The structure of the covalent bond is affected by the electronegativity of the elements involved. The molecules joined by covalent bond range in size from very small to very large polymers. There are different types of structures for covalent substances, these include: macromolecular substances, molecular substances and giant covalent structures. Strong bonds hold individual molecules together but there are negligible forces of attraction among them.
Answer:
Protein Concentration is 2.82mg/L
Explanation:
According to Beer-Lambert's Law, Absorbance is directly proportional to the concentration.
However, the concentration of a solution can be determined from a calibration curve, in which Absorbance is plotted on the y-axis and the Concentration on the x-axis.
Plotting the best line, the equation of line is used
y = mx + c
where y is absorbance = 0.150
m is slope = 0.0163
x is concentration
c is intercept = 0.104
inserting the values from the question
y = mx + c
0.150 = 0.0163x + 0.104
0.0163x = 0.150 - 0.104
0.0163x = 0.046
Divide both sides by 0.0163
0.0163x/0.0163 = 0.046/0.0163
x = 2.82
Concentration of protein = 2.82 mg/L