Answer:
34.3 g
Explanation:
Step 1: Write the balanced equation
2 CH₃CH₂OH ⇒ CH₃CH₂OCH₂CH₃ + H₂O
Step 2: Calculate the moles corresponding to 50.0 g of CH₃CH₂OH
The molar mass of CH₃CH₂OH is 46.07 g/mol.
50.0 g × 1 mol/46.07 g = 1.09 mol
Step 3: Calculate the theoretical moles of CH₃CH₂OCH₂CH₃ produced
The molar ratio of CH₃CH₂OH to CH₃CH₂OCH₂CH₃ is 2:1. The moles of CH₃CH₂OCH₂CH₃ theoretically produced are 1/2 × 1.09 mol = 0.545 mol.
Step 4: Calculate the real moles of CH₃CH₂OCH₂CH₃ produced
The percent yield of the reaction is 85%.
0.545 mol × 85% = 0.463 mol
Step 5: Calculate the mass corresponding to 0.463 moles of CH₃CH₂OCH₂CH₃
The molar mass of CH₃CH₂OCH₂CH₃ is 74.12 g/mol.
0.463 mol × 74.12 g/mol = 34.3 g
Answer:

Explanation:
By the First Law of Thermodynamics, the piece of metal and water reaches thermal equilibrium when water receives heat from the piece of metal. Then:




Answer:
a. True
Explanation:
Alkanes are chains of carbon atoms surrounded by hydrogen atoms. TRUE.
Alkanes are hydrocarbons, that is, they are organic compounds formed only by carbon and hydrogen. In alkanes, carbon atoms are bonded to each other through single covalent bonds and they are also bonded to hydrogen atoms through the same type of bonds. Alkanes have the general formula CnH2n+2.