3NF3 + 5H2O → HNO3 + 2NO + 9HF
Nitrogen fluoride reacts with water to produce nitric acid, nitric oxide, and hydrogen fluoride. The reaction slowly takes place in a boiling solution.
CH2CH2 + H2O → CH3CH2OH
Ethylene is a hydrocarbon with water that creates ethanol and ethanol is an alcohol
Answer:
<h2>Density = 0.46 g/mL</h2>
Explanation:
Density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass = 5.52 g
volume = 12 mL
Substitute the values into the above formula and solve for the Density
That's
<h3>

</h3>
We have the final answer as
<h3>Density = 0.46 g/mL</h3>
Hope this helps you
Answer:
The bee's energy output can be calculated directly, and related to its size. it only needs enough air resistance to counter its weight and enough power in its wings to sustain this resistance. it bee like that.
Answer:
The value is 
Explanation:
From the question we are told that

The initial volume of the fluorocarbon gas is 
The final volume of the fluorocarbon gas is
The initial temperature of the fluorocarbon gas is 
The final temperature of the fluorocarbon gas is 
The initial pressure is 
The final pressure is 
Generally the equation for adiabatically reversible expansion is mathematically represented as
![T_2 = T_1 * [ \frac{V_1}{V_2} ]^{\frac{R}{C_v} }](https://tex.z-dn.net/?f=T_2%20%3D%20%20T_1%20%20%2A%20%5B%20%5Cfrac%7BV_1%7D%7BV_2%7D%20%5D%5E%7B%5Cfrac%7BR%7D%7BC_v%7D%20%7D)
Here R is the ideal gas constant with the value

So
=> 
Generally adiabatic reversible expansion can also be mathematically expressed as

=>
=> 
=>
So

=> 
Answer:
65.18% is the percent yield for this reaction.
Explanation:

Moles of salicyclic acid = 
According to reaction 1 mole of salicyclic acid gives 1 mole of aspirin .
Then 0.01449 mole of salicylic acid will give :
of asprin
Mass of 0.01449 moles of aspirin :
= 0.01449 mol × 180 g/mol = 2.6082 g
Theoretical yield of aspirin = 2.6082 g
Experimental yield of aspirin = 1.7 g
The percent yield for this reaction:


65.18% is the percent yield for this reaction.