By the object's composition and the acting agent to which factors the change of the substance or entity.
<span>The effect of physical property of matter on the object or substance can be better identified when the object doesn't change in composition or in nature. Unlike chemical property which has changed in its composition and atomic structure that was caused by chemical change or reaction due to an agent. Physical property is identified thru physical reactions or changes that has never changed the object in an atomic level, like cutting paper into smaller sizes. The aforementioned example illustrates physical proerty but being cut into smaller buts without changing the object from paper to any other substance, thus, its structure remain and its still called paper regardless of size, mass and texture. <span>
</span></span>
Answer:
28
Explanation:
it states that the atom is neutral, meaning the number of electrons and protons are the same. so if there are 13 electrons, there are 13 protons. And the mass number is neutrons plus protons. So 13+15 is 28
Answer:
<em>Mg = 24.30 g/mol) Mg(s) + 2HCl(aq) MgCl2(aq) + H2(g) Hint: 1 mole of gas at STP occupies 22.4 L</em>
This is a straightforward dilution calculation that can be done using the equation
where <em>M</em>₁ and <em>M</em>₂ are the initial and final (or undiluted and diluted) molar concentrations of the solution, respectively, and <em>V</em>₁ and <em>V</em>₂ are the initial and final (or undiluted and diluted) volumes of the solution, respectively.
Here, we have the initial concentration (<em>M</em>₁) and the initial (<em>V</em>₁) and final (<em>V</em>₂) volumes, and we want to find the final concentration (<em>M</em>₂), or the concentration of the solution after dilution. So, we can rearrange our equation to solve for <em>M</em>₂:

Substituting in our values, we get
![\[M_2=\frac{\left ( 50 \text{ mL} \right )\left ( 0.235 \text{ M} \right )}{\left ( 200.0 \text{ mL} \right )}= 0.05875 \text{ M}\].](https://tex.z-dn.net/?f=%5C%5BM_2%3D%5Cfrac%7B%5Cleft%20%28%2050%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%5Cleft%20%28%200.235%20%5Ctext%7B%20M%7D%20%5Cright%20%29%7D%7B%5Cleft%20%28%20200.0%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%7D%3D%200.05875%20%5Ctext%7B%20M%7D%5C%5D.)
So the concentration of the diluted solution is 0.05875 M. You can round that value if necessary according to the appropriate number of sig figs. Note that we don't have to convert our volumes from mL to L since their conversion factors would cancel out anyway; what's important is the ratio of the volumes, which would be the same whether they're presented in milliliters or liters.