Answer:
1.6 kg
Step-by-step Solution:
Since Force = mass × acceleration we have:
F = 8N
a= 5 m/s^2
m = ?
By plugging the values above into F=ma we obtain:

Therefore, the Chromebook has a mass of 1.6 kilograms.
There are two ways to solve this. The longer way is to use those equations to calculate numbers for total distance.
The easier way is to find the area under the graph. That's right, AREA UNDER VELOCITY-TIME graph is the TOTAL DISTANCE travelled!
it's a shortcut.
Let's split up the area into a triangle and rectangle:
Triangle = 0.5(4-0)(10-0) = 20 m
Rectangle = (6-4)(10-0) = 20 m
Total distance = 40 m!
The correct answer would be A "<span>A light-year is the distance light travels in a year.
This is considered a unit of distance connected to the distance that light can travel in one year. It is proved that light travels at 300,000 km per second so, in 1 year, it might travel 10 trillion km.
</span>
Answer:
a) 
b) 
c)
d) 
Explanation:
Given:
- mass of the astronaut,

- vertical displacement of the astronaut,

- acceleration of the astronaut while the lift,

a)
<u>Now the force of lift by the helicopter:</u>
Here the lift force is the resultant of the force of gravity being overcome by the force of helicopter.

where:
force by the helicopter
force of gravity


b)
The gravitational force on the astronaut:



d)
Since the astronaut has been picked from an ocean we assume her initial velocity to be zero, 
using equation of motion:



c)
Hence the kinetic energy:



Answer:
Total momentum of the system is 378 kg-m/s
Explanation:
It is given that,
Mass of first bumper car, m₁ = 222 kg
Velocity of first bumper car, v₁ = 3.10 m/s (in right)
Mass of other bumper car, m₂ = 165 kg
Velocity of second bumper car, v₂ = -1.88 m/s (in left)
Momentum of the system is given by the product of its mass and velocity. So, the total momentum of this system is given by :


p = 378 kg-m/s
Hence, the total momentum of the system is 378 kg-m/s