The gravitational acceleration at any distance r is given by

where G is the gravitational constant, M the Earth's mass and r is the distance measured from the center of the Earth.
The Earth's radius is
, so the meteoroid is located at a distance of:

And by substituting this value into the previous formula, we can find the value of g at that altitude:

Answer:
(a) 490 N on earth
(b) 80 N on earth
(c) 45.4545 kg on earth
(d) 270.27 kg on moon
Explanation:
We have given 1 kg = 9.8 N = 2.2 lbs on earth
And 1 kg = 1.6 N = 0.37 lbs on moon
(a) We have given mass of the person m = 50 kg
As it is given that 1 kg = 9.8 N
So 50 kg = 50×9.8 =490 N
(b) Mass of the person on moon = 50 kg
As it is given that on moon 1 kg = 1.6 N
So 50 kg = 50×1.6 = 80 N
(c) We have given that weight of the person on the earth = 100 lbs
As it is given that 1 kg = 2.2 lbs on earth
So 100 lbs = 45.4545 kg
(d) We have given weight of the person on moon = 100 lbs
As it is given that 1 kg = 0.37 lbs
So 100 lbs 
Answer:
a)
= 928 J
, b)U = -62.7 J
, c) K = 0
, d) Y = 11.0367 m, e) v = 15.23 m / s
Explanation:
To solve this exercise we will use the concepts of mechanical energy.
a) The elastic potential energy is
= ½ k x²
= ½ 2900 0.80²
= 928 J
b) place the origin at the point of the uncompressed spring, the spider's potential energy
U = m h and
U = 8 9.8 (-0.80)
U = -62.7 J
c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also
K = ½ m v²
K = 0
d) write the energy at two points, maximum compression and maximum height
Em₀ = ke = ½ m x²
= mg y
Emo = 
½ k x² = m g y
y = ½ k x² / m g
y = ½ 2900 0.8² / (8 9.8)
y = 11.8367 m
As zero was placed for the spring without stretching the height from that reference is
Y = y- 0.80
Y = 11.8367 -0.80
Y = 11.0367 m
Bonus
Energy for maximum compression and uncompressed spring
Emo = ½ k x² = 928 J
= ½ m v²
Emo =
Emo = ½ m v²
v =√ 2Emo / m
v = √ (2 928/8)
v = 15.23 m / s
Answer:
Explanation:
spring constant k = 425 N/m
a ) At the point of equilibrium
restoring force = frictional force
= kx = 10 N
425 x = 10
x = 2.35 cm
b )
Work done by frictional force
= -10 x 2.35 x 10⁻² x 2 J ( Distance is twice of 2.35 cm )
= - 0.47 J
= Kinetic energy remaining with the cookie as it slides back through the position where the spring is unstretched .
= 425 - 0.47
= 424.53 J
=