Answer:
Electric potential = 0.00054 V
Explanation:
We are given;
Charge; q = 3 pC = 3 × 10^(-12) C
Radius; r = 2 cm = 0.02 m
Formula for the electric potential of this surface will be;
V = kqr
Where;
K is a constant = 9 × 10^(9) N⋅m²/C².
Thus;
V = 9 × 10^(9) × 3 × 10^(-12) × 0.02
V = 0.00054 V
Answer:
proportional to the current in the wire and inversely proportional to the distance from the wire.
Explanation:
The magnetic field produced by a long, straight current-carrying wire is given by:

where
is the vacuum permeability
I is the current intensity in the wire
r is the distance from the wire
From the formula, we notice that:
- The magnitude of the magnetic field is directly proportional to I, the current
- The magnitude of the magnetic field is inversely proportional to the distance from the wire, r
Therefore, correct option is
proportional to the current in the wire and inversely proportional to the distance from the wire.
Answer: 
Explanation:
Given
Capacitance 
Resistance 
Inductance 
In LCR circuit, current is maximum at resonance frequency i.e.

Insert the values

Also, frequency is given by


Answer:a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation.
Hope This helps!!