Answer:
Explanation:
a ) Between r = 0 and r = r₁
Electric field will be zero . It is so because no charge lies in between r = 0 and r = r₁ .
b ) From r = r₁ to r = r₂
At distance r , charge contained in the sphere of radius r
volume charge density x 4/3 π r³
q = Q x r³ / R³
Applying Gauss's law
4πr² E = q / ε₀
4πr² E = Q x r³ / ε₀R³
E= Q x r / (4πε₀R³)
E ∝ r .
c )
Outside of r = r₂
charge contained in the sphere of radius r = Q
Applying Gauss's law
4πr² E = q / ε₀
4πr² E = Q / ε₀
E = Q / 4πε₀r²
E ∝ 1 / r² .
<span><span>anonymous </span> 4 years ago</span>Any time you are mixing distance and acceleration a good equation to use is <span>ΔY=<span>V<span>iy</span></span>t+1/2a<span>t2</span></span> I would split this into two segments - the rise and the fall. For the fall, Vi = 0 since the player is at the peak of his arc and delta-Y is from 1.95 to 0.890.
For the upward part of the motion the initial velocity is unknown and the final velocity is zero, but motion is symetrical - it takes the same amount of time to go up as it does to go down. Physiscists often use the trick "I'm going to solve a different problem, that I know will give me the same answer as the one I was actually asked.) So for the first half you could also use Vi = 0 and a downward delta-Y to solve for the time.
Add the two times together for the total.
The alternative is to calculate the initial and final velocity so that you have more information to work with.
Answer:
It stays the same.
Explanation:
Entropy of a system either increases or remains constant in any process, it never decreases.
Answer:
2632 foot-pound
Explanation:
Work done: Work is said to be done when ever a force moves a body through a given distance. The S.I unit of force is Newton (N).
From the question,
The expression for work done is given as,
W = Fdcos∅......................... Equation 1
Where W = work done, F = force, d = distance, ∅ = angle between the force and the horizontal.
Given: F = 32 lbs, d = 90 feet, ∅ = 24°
substitute into equation 1
W = 32×90×cos24
W = 2880(0.914)
W = 2632.32
W = 2632 foot-pound