1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
3 years ago
10

Define density Please help!!

Physics
1 answer:
Romashka-Z-Leto [24]3 years ago
5 0

, density is how compact an object is. Put another way, density is the mass of an object divided by its volume.

You might be interested in
Which force is represented by the arrow at
shutvik [7]

A is pulling the block straight down toward the center of the Earth, no matter what the slope of the plane may be. A is the force of gravity.

The directions of B and C both depend on the slope of the plane.

B is a force that's parallel to the plane, pulling the block UP the plane. B is the force of friction.

C is a force perpendicular to the plane, preventing the block from falling down through the plane. C is the normal force.

7 0
2 years ago
Read 2 more answers
Two astronauts are playing catch in a zero gravitational field. Astronaut 1 of mass m1 is initially moving to the right with spe
Ede4ka [16]

The final velocity (v_1_f) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (v_2_f) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.

The given parameters;

  • Mass of the first astronaut, = m₁
  • Mass of the second astronaut, = m₂
  • Initial velocity of the first astronaut, = v₁
  • Initial velocity of the second astronaut, = v₂ > v₁
  • Mass of the ball, = m
  • Speed of the ball, = u
  • Final velocity of the first astronaut, = v_f_1
  • Final velocity of the second astronaut, = v_f_2

The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.

m_1v_1 + m_2v_2 = m_2v_2_f + m_1v_1_f

if v₂ > v₁, then v_1_f > v_2_f, to conserve the linear momentum.

Thus, the final velocity (v_1_f) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (v_2_f) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.

Learn more here: brainly.com/question/24424291

5 0
2 years ago
How much does coast to coast membership cost?
CaHeK987 [17]
The price of coast to coast membership in united states could lie anywhere between $2,000 to $ 5,000
Unless you're a frequent user of this type of event, i think it would be economically more efficient if you pay the resort on one-day price
8 0
3 years ago
A physicist drives through a stop light. When he is pulled over, he tells the police officer that the Doppler shift made the red
Alik [6]

Answer:

Speed of physicist car is 0.036c or 1.08 x 10⁷ m/s .

Explanation:

Doppler Effect is defined as the change in frequency or wavelength of the wave as the source or/and observer moving away or towards each other.

In this case, the Doppler effect equation in terms of wavelength is :

\lambda_{s} = \lambda_{o}\sqrt{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } }       ......(1)

Here \lambda_{s} is source wavelength, \lambda_{o} is observed wavelength, v is speed of the observer and c is the speed of light.

Given :

Source wavelength, \lambda_{s} = 660 nm = 660 x 10⁻⁹ m

Observed wavelength, \lambda_{0} = 555 nm = 555 x 10⁻⁹ m

Substitute these values in the equation (1).

555\times10^{-9} } = 660\times10^{-9} \sqrt{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } }

\sqrt{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } } = 0.84

{\frac{1-\frac{v}{c} }{1+\frac{v}{c} } } = (0.84)^{2} = 0.7056

1-\frac{v}{c}=0.7056+0.7056\frac{v}{c}

\frac{v}{c}=\frac{0.2944}{8.056}

v = 0.036c=0.036\times3\times10^{8}

v = 1.08 x 10⁷ m/s  

8 0
3 years ago
A 3.00-kg object has a velocity 1 6.00 i ^ 2 2.00 j ^2 m/s. (a) what is its kinetic energy at this moment? (b) what is the net w
tatyana61 [14]
(a) The velocity of the object on the x-axis is 6 m/s, while on the y-axis is 2 m/s, so the magnitude of its velocity is the resultant of the velocities on the two axes:
v= \sqrt{(6.00m/s)^2+(2.00 m/s)^2}=6.32 m/s
And so, the kinetic energy of the object is
K= \frac{1}{2}mv^2= \frac{1}{2}(3.00 kg)(6.32 m/s)^2=60 J

(b) The new velocity is 8.00 m/s on the x-axis and 4.00 m/s on the y-axis, so the magnitude of the new velocity is
v= \sqrt{(8.00 m/s)^2+(4.00 m/s)^2}=8.94 m/s
And so the new kinetic energy is
K= \frac{1}{2}mv^2= \frac{1}{2}(3.00 kg)(8.94 m/s)^2=120 J

So, the work done on the object is the variation of kinetic energy of the object:
W=\Delta K=120 J-60 J=60 J
7 0
2 years ago
Other questions:
  • The heating curve of an ice-water mixture that is slowly heated to 125°C contains three sloped and two level portions. What do t
    10·2 answers
  • At what speed does a falling hailstone travel? Does the speed depend on the distance that the hailstone falls?
    15·1 answer
  • An astronaut takes an iPod onto the space shuttle. An identical iPod remains on Earth. Which statement about the pull of Earth's
    13·1 answer
  • Meteoroid is the term used to describe a solid particle that
    6·1 answer
  • A compact car has a mass of 1380 kg . Assume that the car has one spring on each wheel, that the springs are identical, and that
    10·1 answer
  • Can someone please tell me how to solve the question below. Thank you!! If 550-nm light is incident normally on a diffraction gr
    10·1 answer
  • 21. Calculate the acceleration of the bus from point D to E. Show your work.
    7·1 answer
  • I need help i don’t understand
    6·1 answer
  • A ball with an initial velocity of 25 m/s is subject to an acceleration of -9.8m/s^2 how high does it go before coming to a mome
    8·1 answer
  • How should variables be depicted on a graph?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!