Explanation:
a couple is a system of forces with a resultant moment but no resultant force. A better term is force couple or pure moment. Its effect is to create rotation without translation, or more generally without any acceleration of the centre of mass.
Since rope is parallel to the inclined plane so here we can say that net force parallel to the person which is pulling upwards must counterbalance the component of weight of the person.
Now here we will do the components of the weight of the person
given that weight of the person = 500 N
now its components are


now here as we can say that one of the component is balanced here by the normal force perpendicular to plane
while the other component of the weight is balanced by the force applied on the rope
So here the force applied on the rope will be given as


so it apply 300 N force along the inclined plane
Physical. You are only moving the matter (snow) into a different shape. Hope this helps!
Answer:
Rotational inertia of the object is given as

Explanation:
As we know that the acceleration of the object on inclined plane is given as

now we know that velocity at any instant of time is given as

now we know that if the graph between velocity and time is given then the slope of the graph will be same as acceleration
so here we have

now from the graph slope of the graph is given as




now rotational inertia is given as


