Answer:
KE= 1/2 * mass * Velocity^2
Explanation:
1/2 * 72.0kg* 79^2 m/s = 224676 J
I showed my working in the images above. if you have any questions please feel free to ask
Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for
DAC:

⇒ 
Now for the
BAC:

⇒ 
Now, differentiating w.r.t x:
![\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%20%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Btan%5E%7B-1%7D%20%5Cfrac%7Bd%20%2B%20h%7D%7Bx%7D%20-%20%20tan%5E%7B-1%7D%20%5Cfrac%7Bd%7D%7Bx%7D%5D)
For maximum angle,
= 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 = 

After solving the above eqn, we get
x = 
The observer should stand at a distance equal to x = 
Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Newton's three forces, normal, tension and friction, are present in a surprising number of physical situations
Newton's Laws, that describe the relationship between an obejct and the forces acting upon it, apply in almost every physical situation, from quantum mechanics to electricity.
The correct answer is:
Newton’s laws can explain the forces that occur between objects every day