P waves<span> are produced by all earthquakes. They are compression </span>waves<span> that </span>form <span>when rocks break due to pressure in the Earth. S </span>waves<span> are secondary </span>waves<span> that are also created during an earthquake. They travel at a slower speed than the </span>p-waves<span>.
S waves are the waves that come after the earthquake and P waves
</span>
<span>Now that you know the time to reach its maximum height, you have enough information to find out the initial velocity of the second arrow. Here's what you know about it: its final velocity is 0 m/s (at the maximum height), its time to reach that is 2.8 seconds, but wait! it was fired 1.05 seconds later, so take off 1.05 seconds so that its time is 1.75 seconds, and of course gravity is still the same at -9.8 m/s^2. Plug those numbers into the kinematic equation (Vf=Vi+a*t, remember?) for 0=Vi+-9.8*1.75 and solve for Vi to get.......
17.15 m/s</span>
The speed of water can be split into vertical and horizontal speed components:

Due to the force of gravity, the y component will be parabolic. The x component will be linear:

To find when the water hits the ground 2.5m away, set y= 0 and x = 2.5
The relationship between a car and energy is that the car uses gas to produce speed within energy needs to be powered