Volume of gold in the phone = 10 cm^3
= 0.<span>00001 m^3 </span>
Density of gold = 19300 kg/m^3
1 kg mass = 2.2 pounds
Mass of 10 cm^3 of gold = 0<span>.00001 m^3 * (19300 kg/m^3)
= 0.193 kg
So
0.193 kg = 0.193 * 2.2 pounds
= 0.43 pounds
I think there is something wrong with the options given in the question.</span>
Henry will lift 200 N load 20 m up a ladder in 40 s. While the Ricardo will take 400 N load in 80 seconds. So, For Henry to take 400 N load it will take him 80 seconds in two attempts. And,also, he will have to cover 40 m of distance.
Using the precise speed of light in a vacuum (

), and your given distance of

, we can convert and cancel units to find the answer. The distance in m, using

, is

. Next, for the speed of light, we convert from s to min, using

, so we divide the speed of light by 60. Finally, dividing the distance between the Sun and Venus by the speed of light in km per min, we find that it is
6.405 min.
Answer:
C. Just measure the volume of the container it is in
Explanation:
Another why of measuring the volume of gas is by filling a contractor with water then in invert a glass jar air will miss place the space taken by water then measure the volume of water misplaced to get the volume to air
Answer:
Properties of semiconductors are determined by the energy gap between valence and conduction bands. To understand, what is semiconductor, we have to define these terms. In solid-state physics, the energy gap or the band gap is an energy range between valence band and conduction band where electron states are forbidden.