The correct answer is "None of the above; all of these statements are valid." All the statements namely, it depends on the particle's charge, it depends on the strength of the external magnetic field, it depends on the particle's velocity, and it acts at right angles to the direction of the particle's motion are all valid. Thank you for posting your question. I hope this answer helped you. Let me know if you need more help.
Answer:
Walking’ - If a handball player takes more than three steps without dribbling (bouncing the ball) or holds the ball for more than 3 seconds without bouncing it, shooting or passing, then that is deemed ‘walking' and possession is lost.
'Double dribble’ - Handball players cannot receive the ball and bounce it, then hold the ball, and bounce it again. This is termed ‘double dribble’ and is against the rules.
Askmeanything2♡
Answer:
The impulse exerted by one cart on the other has a magnitude of 4 N.s.
Explanation:
Given;
mass of the first cart, m₁ = 2 kg
initial speed of the first car, u₁ = 3 m/s
mass of the second cart, m₂ = 4 kg
initial speed of the second cart, u₂ = 0
Let the final speed of both carts = v, since they stick together after collision.
Apply the principle of conservation of momentum to determine v
m₁u₁ + m₂u₂ = v(m₁ + m₂)
2 x 3 + 0 = v(2 + 4)
6 = 6v
v = 1 m/s
Impulse is given by;
I = ft = mΔv = m(
The impulse exerted by the first cart on the second cart is given;
I = 2 (3 -1 )
I = 4 N.s
The impulse exerted by the second cart on the first cart is given;
I = 4(0-1)
I = - 4 N.s (equal in magnitude but opposite in direction to the impulse exerted by the first).
Therefore, the impulse exerted by one cart on the other has a magnitude of 4 N.s.
Get your numbers gathered up and solve the problem in the ordered step
Answer:
The upper motor neurons synapse in the spinal cord connect with anterior horn cells of lower motor neurons, usually via interneurons. The anterior horn cells are the cell bodies of the lower motor neurons and are located in the grey matter of the spinal cord.
Explanation:
Interneurons are the central nodes of neural circuits, enabling communication between the upper motor neurons, sensory or motor neurons located in the brain and spinal cord and they send signals to lower motor neurons or central nervous system (CNS) in the brain stem and spinal cord . When they get a signal from the upper motor neurons, they send another signal to your muscles to make them contract. They play vital roles in reflexes, neuronal oscillations, and neurogenesis in the adult mammalian brain.
Renshaw cells are among the very first identified interneurons. They are excited by the axon collaterals of the motor neurons. In addition, Renshaw cells make inhibitory connections to several groups of motor neurons.