Answer:
V=15.3 m/s
Explanation:
To solve this problem, we have to use the energy conservation theorem:

the elastic potencial energy is given by:

The work is defined as:

this work is negative because is opposite to the movement.
The gravitational potencial energy at 2.5 m aboves is given by:

the gravitational potential energy at the ground and the kinetic energy at the begining are 0.

Answer:
Yes is large enough
Explanation:
We need to apply the second Newton's Law to find the solution.
We know that,

And we know as well that

Replacing the aceleration value in the equation force we have,

Substituting our values we have,


The weight of the person is then,


<em>We can conclude that force on the ball is large to lift the ball</em>
Special relativity led the path for general relativity; special relativity is in a sense a special application of the rules of general relativity. While general relativity is in position to tackle all of these problems, special relativity can tackle only problems in inertial frames. Inertial frame means that the frame of reference is inot accelerating. So, we disqualify answers A and D. However, remember that moving in a circle means that there is an acceleration, the centrifugal one, even if the speed does not change. Hence C is also incorrect.
The correct answer is B, since if there is no change in velocity, the frame does not accelerate and it is inertial.
Kinetic energy is greatest at the lowest point of a roller coaster and least at the highest point