Answer:
The longest wavelength of light is 666.7 nm
Explanation:
The general form of the grating equation is
mλ = d(sinθi + sinθr)
where;
m is third-order maximum = 3
λ is the wavelength,
d is the slit spacing (m/slit)
θi is the incident angle
θr is the diffracted angle
Note: at longest wavelength, sinθi + sinθr = 1
λ = d/m
d = 1/500 slits/mm
λ = 1 mm/(500 *3) = 1mm/1500 = 666.7 X 10⁻⁶ mm = 666.7 nm
Therefore, the longest wavelength of light is 666.7 nm
I think comets because they are small and they are composed of ice or water. Hope it helps :)
Answer:
They both describe atoms as being made up of positive and negative matter.
Explanation:
In both Bohr's model and Thomson model, the atom consists of positively-charged matter and negatively-charged matter. However, the structure of the atom in the two models is totally different:
- in Thomson's model, the atom consists of a large sphere of uniform positive charge, and electrons (which are negatively charged) are scattered all around inside this sphere
- In Bohr's model, the atom consists of a small, positively charged nucleus, while the electrons (negatively charged) orbit around the nucleus in precise orbits.
So if p=w/t
then 4400=(w)(200)
so you would multiply 4440•200 and get 880,000