Answer:
Niels Bohr, refined the model of an atom by proposing a quantized shell structure atomic model in order to describe how the electrons are able to maintain stable orbits around the nucleus
Based on the predictions of classical mechanics the electron motion of the Rutherford model was unstable as the electrons where expected to have lost some energy during motion and thus having to come rest in the nucleus
According to the modification by Neils Bohr in 1913, electrons move in shells or orbits of fixed energy and emission of electromagnetic radiation takes place only when electrons changes the orbit in which they move
Explanation:
C. Aluminum (Al) oxidized, zinc (Zn) reduced
<h3>Further explanation</h3>
Given
Metals that undergo oxidation and reduction
Required
A galvanic cell
Solution
The condition for voltaic cells is that they can react spontaneously, indicated by a positive cell potential.

or:
E ° cell = E ° reduction-E ° oxidation
For the reaction to occur spontaneously (so that it E cell is positive), the E° anode must be less than the E°cathode
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The standard potential value(E°) from left to right in the voltaic series will be greater, so that the metal undergoing an oxidation reaction (acting as an anode) must be located to the left of the reduced metal (as a cathode)
<em />
From the available answer choices, oxidized Al (anode) and reduced Zn (cathode) are voltaic/galvanic cells.
42- 8 = 34 sand dunes must be the answer
hope so it helps
Answer:
And we have to calculate the number of moles of sucrose present in a lb mass of sucrose: Moles of sucrose=454⋅g342.30⋅g⋅mol−1=1.33⋅mol .
Explanation:
<u>Brainliest</u><u> </u><u>Answer </u><u>Pls</u>
To get the ∆S of the reaction, we simply have to add the ∆S of the reactants and the ∆S of the products. Then, we get the difference between the ∆S of the products and the ∆S of the products. If the <span>∆S is negative, then the reaction spontaneous. If the otherwise, the reaction is not spontaneous.</span>