Answer:
Ok, so the process here is to convert the mass of H2 (hydrogen gas) to moles by dividing the mass by the molar mass of H2. Once you have the moles then you have to multiply by the STP (standard temperature and pressure) molar volume which should be 22.4.
Molar mass of H2 = (1.01)x2 = 2.02g/mol
19.3/2.02 = 9.55 moles
Now just multiply the moles by the molar volume
9.55 moles x 22.4 = 213.92 Litres of H2 are in 19.3g of H2
Answer:
1 has the highest density because it has the most amount of circles in the least amount of space- it is the most densely filled with circles; it is the most dense.
Answer:
how can I solve this ?4Al+3O2 produce 2Al2O3 find a) oxygen atoms needed to react with 5.4 g of aluminium b) grams of oxygen needed to react with 0.6 mol of aluminium?
(A) n=m/M,
n(Al)=5.4/27=0.2 moles
n(O2)=n(Al)*3/4=0.2*3/4=0.15 moles
Number of oxygen atoms= n(O2)*Avogadro's number
=0.15*6.02*10^23=9.03*10^22 oxgyen atoms
(B)
n=m/M
n(Al)=0.6/27=0.02222 moles
n(O2)=n(Al)*3/4=0.016666 moles
m=n*M
m(O2)=0.0166666*32=0.53333 grams
Answer:
c
Explanation:
b and d are out, the variables are changed. a would be a repetition, not a replication. c uses the same method and variables with a different control group
Answer:
Higher than 59 °C because dipole-dipole interactions in iodine monochloride are stronger than dispersion forces in bromine.
Explanation:
I just took the test and i got it right