Answer: molecular formula = C12H16O8
Explanation:
NB Mm CO2= 44g/mol
Mm H2O= 18g/mol
Moles of CO2 = 36.86/44=0.84mol
0.84mole of CO2 has 0.84 mol of C
Moles of H2O = 10.06/18= 0.56mol
1mol of H20 contains 1mol of O and 2 mol H,
Hence there are 0.56mol O and (0.56×2)mol H
Hence the compound contains
C= 0.84 mol H= 1.12mol O=0.56mol
Divide through by smallest number
C= 0.83/0.56= 1.5mol
H= 1.12/0.55= 2mol
O= 0.56/0.56= 1mol
Multiply all by 2 to have whole number of moles = 3:4:2
Hence empirical formula= C3H4O2
(C3H4O2)n = 288.38
[(12×3) + 4+(16×2)]n= 288.38
72n=288.38
n= 4
:. Molecular formula=(C3H4O2)4= C12H16O8
Answer:
1) ΔG°r(298 K) = - 28.619 KJ/mol
2) ΔG°r will decrease with decreasing temperature
Explanation:
- CO(g) + H2O(g) → H2(g) + CO2(g)
1) ΔG°r = ∑νiΔG°f,i
⇒ ΔG°r(298 K) = ΔG°CO2(g) + ΔG°H2(g) - ΔG°H2O(g) - ΔG°CO(g)
from literature, T = 298 K:
∴ ΔG°CO2(g) = - 394.359 KJ/mol
∴ ΔG°CO(g) = - 137.152 KJ/mol
∴ ΔG°H2(g) = 0 KJ/mol........pure substance
∴ ΔG°H2O(g) = - 228.588 KJ/mol
⇒ ΔG°r(298 K) = - 394.359 KJ/mol + 0 KJ/mol - ( - 228.588 KJ/mol ) - ( - 137.152 KJ7mol )
⇒ ΔG°r(298 K) = - 28.619 KJ/mol
2) K = e∧(-ΔG°/RT)
∴ R = 8.314 E-3 KJ/K.mol
∴ T = 298 K
⇒ K = e∧(-28.619/(8.314 E-3)(298) = 9.624 E-6
⇒ ΔG°r = - RTLnK
If T (↓) ⇒ ΔG°r (↓)
assuming T = 200 K
⇒ ΔG°r(200 K) = - (8.314 E-3)(200)Ln(9.624E-3)
⇒ ΔG°r (200K) = - 19.207 KJ/mol < ΔG°r(298 K) = - 28.619 KJ/mol
Answer:
Gamma rays
Since they have high penetrating power.
Answer:
The strength of electric force depends on the amount of electric charge on the particles and the distance between them. Larger charges or shorter distances result in greater force.
Explanation:
Answer:
hi friends I don't no answer so sorry sorry sorry
Explanation:
but you follow me and give me brainliest ok by by by by by