Explanation:
The given data is as follows.
= 100 mm Hg or
= 0.13157 atm
=
= (1080 + 273) K = 1357 K
=
= (1220 + 273) K = 1493 K
= 600 mm Hg or
= 0.7895 atm
R = 8.314 J/K mol
According to Clasius-Clapeyron equation,

![log(\frac{0.7895}{0.13157}) = \frac{\Delta H_{vap}}{2.303 \times 8.314 J/mol K}[\frac{1}{1357 K} - \frac{1}{1493 K}]](https://tex.z-dn.net/?f=log%28%5Cfrac%7B0.7895%7D%7B0.13157%7D%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B2.303%20%5Ctimes%208.314%20J%2Fmol%20K%7D%5B%5Cfrac%7B1%7D%7B1357%20K%7D%20-%20%5Cfrac%7B1%7D%7B1493%20K%7D%5D)
![log (6) = \frac{\Delta H_{vap}}{19.147}[\frac{(1493 - 1357) K}{1493 K \times 1357 K}]](https://tex.z-dn.net/?f=log%20%286%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B19.147%7D%5B%5Cfrac%7B%281493%20-%201357%29%20K%7D%7B1493%20K%20%5Ctimes%201357%20K%7D%5D)
0.77815 = 
=
J/mol
= 
= 221.9 kJ/mol
Thus, we can conclude that molar heat of vaporization of substance X is 221.9 kJ/mol.
Hi , NaCl is basically salt , Na for sodium and Cl for chlorine , these elements make Sodium Chloride .The bond between them is ionic.
Explanation:
an increase in concentration increases the rate of the reaction. This is because there are more reactant particles available which allows for more effective collisions between reactant particles in a given period of time. More effective collisions bring about a faster rate of reaction.
Answer:
a.
△H=−72 kcal
The energy required for production of 1.6 g of glucose is [molecular mass of glucose is 180 gm]
b.

The iron(III) ions and chloride ions remain aqueous and are spectator ions in a reaction that produces solid barium sulfate.
Answer:
Physical change: A,C ,D, F, H, I
Chemical Change: B, E, G, J, K