Energy and Work have the same unit of measurement which is Joules in SI units.
Explanation:
- A Joule of Work is said to be done on an object when energy is transferred to that particular object.
- If two objects are involved, when one object transfers energy onto the second, a joule of work is said to be done by the first object.
- Work is also the application of force on an object over a distance. So Work = Force × Displacement
- Energy is neither created nor destroyed. It is in 2 forms - kinetic and potential.
- Kinetic energy is defined as the energy of a moving object while potential energy is known as the energy that is stored within an object.
- Kinetic Energy = 1/2 × mass × (velocity)²
- Potential Energy = mass × acceleration due to gravity × height
- Both energy and work are measured in Joules.
Answer:
(a) V = 0.75 m/s
(b) V = 0.125 m/s
Explanation:
The speed of the flow of the river can be given by following formula:
V = Q/A
V = Q/w d
where,
V = Speed of Flow of River
Q = Volume Flow Rate of River
w = width of river
d = depth of river
A = Area of Cross-Section of River = w d
(a)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 20 m
d = 20 m
Therefore,
V = (300 m³/s)/(20 m)(20 m)
<u>V = 0.75 m/s</u>
<u></u>
(b)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 60 m
d = 40 m
Therefore,
V = (300 m³/s)/(60 m)(40 m)
<u>V = 0.125 m/s</u>
Answer:

Explanation:
From the question we are told that:
Acceleration 
Displacement 
Initial time 
Final Time 
Generally the equation for Velocity of 1.05 travel is mathematically given by
Using Newton's Law of Motion



Generally the equation for Distance traveled before stop is mathematically given by



Generally the equation for Distance to stop is mathematically given by
Since For this Final section
Final velocity 
Initial velocity 
Therefore
Using Newton's Law of Motion


Giving

Therefore



Generally the Total Distance Traveled is mathematically given by



Answer:
a= 0.22 m/s²
Explanation:
Given that
M = 3.5 kg
θ = 30°
m = 1 kg
μ= 0.3
The force due to gravity
F₁= M g sinθ
F₁=3.5 x 10 x sin 30
F₁= 17.5 N
F₂ = m g
F₂ = 1 x 10 = 10 N
The maximum value of the friction force on the incline plane
Fr = μ M g cosθ
Fr = 0.3 x 2.5 x 10 cos30°
Fr= 6.49 N
Lets take acceleration of the system is a m/s²
F₁ - F₂ - Fr = (M+m) a
17.5 - 10 - 6.49 = (3.5+1)a
a= 0.22 m/s²
Answer:
attracting iron and producing a magnetic field