Answer:
Explanation:
The rocky planets include Mercury, Venus, Earth, and Mars. they are made up of rocks and metals and have solid surfaces.They are the closest four planets to the Sun. The gas giants are Neptune, Uranus, Saturn, and Jupiter. they are further from the sun and are in the outer part of the solar system. I hope this helps!
Answer:
The slower the train is moving, the less are the changes of the magnetic flux, thus the eddy currents become weaker.
Explanation:
A magnetic brakes is not a very efficient way of braking when a train is moving slowly because at low speeds, the changes in the magnetic flux are very less and so it causes the eddy current to become weaker.
Let us find the drag force which is proportional to the velocity of two conducting plates.
The EMF that is induced in the eddy currents are : 
The force which is due to the induced magnetic field is, 
Therefore, 

Here, force is directly proportional to the velocity of the two conducting plates.
Therefore, we can say that when the speed of the train is low, the magnetic flux changes are less and thus the eddy currents are weaker.
Answer:
The minimum total speed is 11.2km/s
Explanation:
We are been asked to find the escape velocity.
Escape velocity is defined as the minimum initial velocity that will take a body(projectile)away above the surface of a planet(earth) when it's projected vertically upwards.
The formula to calculate the escape velocity is Ve = √2gR
For the earth g = 9.8m/s2 , R = 6.4*10^6
Substituting into the equation Ve = √2*9.8*6.4*10^6 = 11.2*10^3m/s
=11.2km/s
Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:

I believe the correct answer from the choices listed above is option C. X-rays have greater frequency than microwaves. In a electromagnetic spectrum, the order in increasing frequency is as follows:
radio waves,microwaves, terahertz radiation, infrared radiation, visible light, ultraviolet radiation,X-rays<span> and gamma </span>rays<span>.</span>