Answer:
The sum of PE and KE remains constant
Explanation:
Answer:
Pressure = 9.94 x 10⁶ Pascals
Explanation:
given data
mass = 51 kg
radius = 0.400 cm
solution
we know Pressure that is express as here
Pressure = total force on an area ÷ the area of the area .................1
and
Force is the woman's weight so weight will be
Weight = mass × gravity .................2
put here value
Weight = 51 × 9.8 m/s²
Weight = 499.8 Newtons
and
Area of a circle of bottom of the heel = (π) × (radius)² ...................3
put here value
Area = (π) × (0.40 cm)²
Area = 0.502654 cm²
Area = 0.0000502654 m²
and
now we put value in equation 1 we get
Pressure = force ÷ area
Pressure = 499.8 ÷ 0.0000502654
Pressure = 9943221.381 N/m²
Pressure = 9.94 x 10⁶ Pascals
Answer:
Option A
Explanation:
Mechanical waves requires some medium to travel through. They travel faster in the dense medium as compared to a free medium.
The speed of a mechanical wave is fastest in the solid medium and the slowest in the gaseous medium. Hence, as the wave traverses from gaseous medium to the solid medium, its speed increases.
Thus, option A is correct
Air pressure changes with altitude because of issues related to gravity. Molecules have more weight the closer they are to the Earth and more of them move to lower elevations as a result; this causes increased pressure because there are more molecules in number and proximity. Conversely, air at higher elevations has less weight, but also forces pressure on those layers below it, resulting in the molecules closer to the Earth supporting more weight, increasing the pressure
Answer:
a = 1 m/s² and
Explanation:
The first two parts can be seen in attachment
We use Newton's second law on each axis
Y axis
Ty - W = 0
Ty = w
X axis
Tx = m a
With trigonometry we find the components of tension
Sin θ = Ty / T
Ty = T sin θ
Cos θ = Tx / T
Tx = T cos θ
We calculate the acceleration with kinematics
Vf = Vo + a t
a = (Vf -Vo) / t
a = (20 -10) / 10
a = 1 m/s²
We substitute in Newton's equations
T Sin θ = mg
T cos θ = ma
We divide the two equations
Tan θ = g / a
θ = tan⁻¹ (g / a)
θ = tan⁻¹ (9.8 / 1)
θ = 84º
We see that in the expression of the angle the mass does not appear therefore you should not change the angle