Answer:
38.6 N
2.57 m/s²
Explanation:
Draw a free body diagram of the box. There are four forces:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force P pulling at an angle 40°.
Sum of forces in the y direction:
∑F = ma
N + P sin 40° − mg = 0
N = mg − P sin 40°
The net force in the x direction is:
∑F = P cos 40° − Nμ
∑F = P cos 40° − (mg − P sin 40°) μ
∑F = P cos 40° − mgμ + Pμ sin 40°
∑F = P (cos 40° + μ sin 40°) − mgμ
Plugging in values:
∑F = (80 N) (cos 40° + 0.23 sin 40°) − (15 kg) (10 m/s²) (0.23)
∑F = 38.6 N
Net force equals mass times acceleration:
∑F = ma
38.6 N = (15 kg) a
a = 2.57 m/s²
If the voltage and the resistance are known within the circuit, then you can use the formula:
Current = Voltage / Resistance
If you know the amount of charge going past a certain location in a certain amount of time, then you can find the current using:
Current = charge / time
If an object has more protons than electrons, then the net charge on the object is positive. If there are more electrons than protons, then the net charge on the object is negative. If there are equal numbers of protons and electrons, then the object is electrically neutral.
Source: https://www.khanacademy.org/science/ap-physics-1/ap-electric-charge-electric-force-and-voltage/electric-charge-ap/a/electric-charge-ap1
Hope this helps :)
They both have a certain force. They are different because that force is different
S= 343m/s
F=256Hz
WL= 343ms/256-1
WL=V/F
= 1.339844m