Answer:
- plane: 530 mi/h
- wind: 40 mi/h
Step-by-step explanation:
Let p and w represent the speeds of the plane and the wind. The relation between time, speed, and distance is ...
speed = distance/time
p +w = (2565 mi)/(4.5 h) = 570 mi/h
p -w = (2205 mi)/(4.5 h) = 490 mi/h
Adding these speeds, we get ...
(p +w) +(p -w) = (570) +(490) mi/h
2p = 1060 mi/h
p = 530 mi/h
Then the speed of the wind is ...
w = 570 mi/h -p = (570 -530) mi/h = 40 mi/h
The plane's speed is 530 mi/h; the wind speed is 40 mi/h.
Answer:
Step-by-step explanation:
First let us write the given polynomial as in descending powers of x with 0 coefficients for missing items
F(x) = x^3-3x^2+0x+0
We have to divide this by x-2
Leading terms in the dividend and divisor are
x^3 and x
Hence quotient I term would be x^3/x=x^2
x-2) x^3-3x^2+0x+0(x^2
x^3-2x^2
Multiply x-2 by x square and write below the term and subtract
We get
x-2) x^3-3x^2+0x+0(x^2
x^3-2x^2
---------------
-x^2+0x
Again take the leading terms and find quotient is –x
x-2) x^3-3x^2+0x+0(x^2-x
x^3-2x^2
---------------
-x^2+0x
-x^2-2x
Subtract to get 2x +0 as remainder.
x-2) x^3-3x^2+0x+0(x^2-x-2
x^3-2x^2
---------------
-x^2+0x
-x^2+2x
-------------
-2x-0
-2x+4
------------------
-4
Thus remainder is -4 and quotient is x^2-x-2
X=54 you do 331-7=324 the do 324/6=54 the end hope this helps
The answer is 24" hope this helps.