Answer:
M
Explanation:
To apply the concept of <u>angular momentum conservation</u>, there should be no external torque before and after
As the <u>asteroid is travelling directly towards the center of the Earth</u>, after impact ,it <u>does not impose any torque on earth's rotation,</u> So angular momentum of earth is conserved
⇒
-
is the moment of interia of earth before impact -
is the angular velocity of earth about an axis passing through the center of earth before impact
is moment of interia of earth and asteroid system
is the angular velocity of earth and asteroid system about the same axis
let 
since 

⇒ if time period is to increase by 25%, which is
times, the angular velocity decreases 25% which is
times
therefore

(moment of inertia of solid sphere)
where M is mass of earth
R is radius of earth

(As given asteroid is very small compared to earth, we assume it be a particle compared to earth, therefore by parallel axis theorem we find its moment of inertia with respect to axis)
where
is mass of asteroid
⇒ 

=
+ 

⇒

From A to B its 5 ohm.
above shown 6 and 12 ohm resistors are in parallel to short circuit hence their equivalent resistance is zero.
(Current doesnt flow through a resisstor if there is a Short circuit alternate.
Answer:
The moon's orbit draws the oceans to it, which triggers ocean tides. Force produces stars and planets by gathering the mass from which it exists.
Explanation:
The moon's orbit draws the oceans to it, which triggers ocean tides. Force produces stars and planets by gathering the mass from which it exists.
Answer is above
<em><u>Hope this helps.</u></em>