Let F = required force, N
Given:
d = 12 m, distance
W = 280 J, work done
By definition,
W = F*d,
therefore
(F N)*(12 m) = (280 J)
F = 280/12 = 23.33 N
Answer: The force is 23.3 N (nearest tenth)
Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
Answer:
A trough
Explanation:
A trough is an elongated area of relatively low pressure extending from the center of a region of low pressure.
I HoPe ThIs Helps!!!
This is a concept of momentum. In equation, momentum is the product of force and distance. When a ball is thrown, its force is constant all throughout unless disturbed by an external force. Therefore, force is the constant of proportionality that relates momentum with distance. When you block a ball from a given distance, you would feel the great force on your hand. In order to reduce the force, you have to follow the direction of the force in order to minimize the impact. By doing this, you gradually decrease the momentum of the ball.