The work-energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body by the resultant force acting on that body. Conversely, a decrease in kinetic energy is caused by an equal amount of negative work done by the resultant force.
The answer is true: the pressure of a gas will decrease as temperature decreases in a rigid container.
This is one of the central gas laws called the Gay-Lussac law that states for a given gas at a constant volume, the pressure of the gas is directly proportional to its temperature. We also know that as temperature reduces, so too does molecular interaction. Increased temperature results in increased pressure, and decreased temperature therefore results in decreased pressure.
Answer: The elimination of seasonal variations
Explanation:
Since the cosmic catastrophic event which occurred led to the tilt of the Earth's axis relative to the plane of orbit to increase from 23.5° to 90°, the most obvious effect of this change would be the elimination of seasonal variations.
It should be noted that seasonal variation refers to the variation in a time series that's within a year which is repeated. The cause of seasonal variation can include rainfall, temperature, etc.
I believe an Atom is a very powerful source, the basic unit of a chemical element. An atom is a source of nuclear energy.
But a molecule on the other hand isn't so different.
a group of atoms bonded together, representing the smallest fundamental unit of a chemical compound that can take part in a chemical reaction.
I hope that helps, have a fantastic day!