We have to add two vectors.
Vector #1: 0.15 m/s north
Vector #2: 1.50 m/s east
Their sum:
Magnitude: √(0.15² + 1.50²)
Magnitude = √(0.0225+2.25)
Magnitude = √2.2725
Magnitude = <em>1.5075 m/s</em>
Direction = arctan(0.15/1.50) north of east
Direction = <em>5.71° north of east</em>
We know that P1V1 = P2V2, if there is a constant pressure, then the P1 and P2 can cancel out, so it is V1=V2 that is whats left.
Answer:
C)the right cord pulls on the pulley with greater force than the left cord
Explanation:
As we can see the figure that B is connected to the right string while A is connected to the left string
Now force equation for B as it will move downwards is given as

similarly for block A which will move upwards we can write the equation as

now we know that pulley is also rotating so the tangential acceleration of the rope at the contact point with pulley must be same as that of acceleration of the blocks
so here pulley will rotate clockwise direction
So tension in the right string must be more than the left string
So correct answer will be
C)the right cord pulls on the pulley with greater force than the left cord
Mass of object/source
Gravity
Fg=mg