Hello There!
The solution: salt water
Mix: Physical as you could still separate them
A chemical mix can't be reversed.
Hope This Helps You!
Good Luck :)
- Hannah ❤
1. LDFs
2. Intermolecular Forces
3. Intramolecular Forces
4. Linear
5. Tetrahedral
Edit: I'm new to this site and idk how to use it properly. I'm not sure about 2 and 3 currently because these forces are between molecules as well so INTERmolecular would be used twice (?)
Explanation:
(A)role of nittogen fixing bacteria
=Nitrogen-fixing bacteria, microorganisms capable of transforming atmospheric nitrogen into fixed nitrogen (inorganic compounds usable by plants). More than 90 percent of all nitrogen fixation is effected by these organisms, which thus play an important role in the nitrogen cycle.
B)role of nitrifying bacteria
=Nitrifying bacteria convert the most reduced form of soil nitrogen, ammonia, into its most oxidized form, nitrate. In itself, this is important for soil ecosystem function, in controlling losses of soil nitrogen through leaching and denitrification of nitrate.
C)role of denitrifying bacteria
=Denitrifying bacteria converts nitrates back to nitrogen gas.
Answer:
FALSE
Explanation:
Assuming that the gas is ideal
Therefore the gas obeys the ideal gas equation
<h3>Ideal gas equation is </h3><h3>P × V = n × R × T</h3>
where
P is the pressure exerted by the gas
V is the volume occupied by the gas
n is the number of moles of the gas
R is the ideal gas constant
T is the temperature of the gas
Here volume of the gas will be the volume of the container
Given the volume of the container and number of moles of the gas are constant
As R will also be constant, the pressure of the gas will be directly proportional to the temperature of the gas
P ∝ T
∴ Pressure will be directly proportional to the temperature