The expression (-2 - 6i)-(-2-4i) to a + bi form is 0 - 2i.
Complete question.
Simplify the expression to a + bi form:
(-2 - 6i)-(-2-4i)
Square root of any negative number are expressed as a complex number. For example i = √-1
Complex numbers are generally written in the format z = x+iy
Given the expression (-2 - 6i)-(-2-4i)), in expansion:
(-2 - 6i)-(-2-4i)
= -2 - 6i + 2+4i
Collect the like terms
= (-2 + 2) - 6i + 4i
= 0 - 2i
Therefore the expression (-2 - 6i)-(-2-4i) to a + bi form is 0 - 2i.
Learn more on complex number here: brainly.com/question/12375854
cuál de los siguientes documentos es más Útil para construir carretera
Answer:
ΔV = 0.36π in³
Step-by-step explanation:
Given that:
The radius of a sphere = 3.0
If the measurement is correct within 0.01 inches
i.e the change in the radius Δr = 0.01
The objective is to use differentials to estimate the error in the volume of sphere.
We all know that the volume of a sphere

The differential of V with respect to r is:

dV = 4 πr² dr
which can be re-written as:
ΔV = 4 πr² Δr
ΔV = 4 × π × (3)² × 0.01
ΔV = 0.36π in³