Answer:
Favorite Answer
1.0 x10^-14 = (1.0 x 10^-13) (x)
x = 1.0 x 10^-1 = 0.1 M (this is the [OH-])
pOH = -log 0.1 = 1.0
Explanation:
I hope this helps :) sorry if not :(
Well, we need to find the ratio of Al to the other reactant.
Al:HCl = 1:3
--> this means that for every 1 Al used, you have to use 3 HCl.
6*3 = 18 moles of HCl needed to fully react with 6 moles of Al. Since 13<18, HCL is the limiting reactant.
The ratio of HCl:AlCl = 3:1
13/3 = 4.3333...
The final answer is HCl is the limiting reactant with 4.3 moles of AlCl3 able to be produced.
Hope this helps!!! :)
Given:
P1 = 13.0 atm
T1 = 20 °C
T2 = 102 °C
Required:
P2 of oxygen
Solution:
At constant volume,
we can apply Gay-Lussac’s law of pressure and temperature relationship
P1/T1=P2/T2
(13.0 atm) / (20 °C)
= P2 / (102 °C)
P2 = 66.3 atm
The answer is not in the choices given.
Answer:
The resulting solution is basic.
Explanation:
The reaction that takes place is:
First we <u>calculate the added moles of HNO₃ and KOH</u>:
- HNO₃ ⇒ 12.5 mL * 0.280 M = 3.5 mmol HNO₃
- KOH ⇒ 5.0 mL * 0.920 M = 4.6 mmol KOH
As <em>there are more KOH moles than HNO₃,</em> the resulting solution is basic.
B as the glass just changes form as it shattered but the chemical composition is same as it was before