No they wouldn't. <span>You can't make an </span>ionic compound<span> with these elements.</span>
Answer:
0.15g
Explanation:
Given parameters:
Number of molecules of water = 1.2 x 10²¹ molecules
Unknown:
Mass of SnO₂ = ?
Solution:
To solve this problem, we have to work from the known to the unknown specie;
SnO₂ + 2H₂ → Sn + 2H₂O
Ensure that the equation given is balanced;
Now,
the known species is water;
6.02 x 10²³ molecules of water = 1 mole
1.2 x 10²¹ molecules of water =
= 0.2 x 10⁻²moles
Number of moles of water = 0.002moles
From the balanced chemical equation:
2 mole of water is produced from 1 mole of SnO₂
0.002 moles of water will be produced from
= 0.001moles
To find the mass;
Mass = number of moles x molar mass
Molar mass of SnO₂ = 118.7 + 2(16) = 150.7g/mol
Mass = 0.001 x 150.7 = 0.15g
Answer:
A hydrocarbon containing a carbon - carbon double bond.
Explanation:
Alkene is hydrocarbon containing a
carbon - carbon double bond.
( Refer the attachment to understand more clearly )
Answer:
<u>Our beaches would be unprotected</u>
In the short-term, these artificial sand hills will be destroyed by the elements. Because sand dunes protect inland areas from swells, tides, and winds, they must be protected and defended like national treasures. ... The ocean and the wind can have an unpredictable, destructive force on coastal regions.
- surfertoday
Natural sand dunes play a vital role in protecting our beaches, coastline and coastal developments from coastal hazards such as erosion, coastal flooding and storm damage. Sand dunes protect our shorelines from coastal erosion and provide shelter from the wind and sea spray.
- Waikato Regional Council