This is thermodynamics. When you increase the temperature of an object, the particles gain on kinethic energy ergo the move faster. When you decrease it, they slow down.
Answer:
It is in the state of "thermal arrest"
Explanation:
The temperature stays constant during the phase change process . This is because the matter has more internal energy and heat has to be taken away for the solidification process to begin. The energy that is required for a phase change is know as latent heat (which is the energy released or absorbed by a body during a thermodynamic process).
Specific heat capacity of any substance comes with the unit : J/(g*degree C)
for molar capacity , change gram -> moles unit ( J / moles * degree C)
4.18 J / mol - degree C
H = 1.01 g * 2 = 2.02 g
O = 16 g
2.02 + 16 = 18.02 g
Now :- 4.18 J / mol- degree C) * 18.02 / 1 mole H2O
molar heat = 75.3 J / mol - degree C
<span />
The highest atom economy
2CO + O₂ ⇒ 2CO₂
<h3>Further explanation</h3>
Given
The reaction for the production of CO₂
Required
The highest atom economy
Solution
In reactions, there are sometimes unwanted products that can be said to be a by-product or a waste product. Meanwhile, the desired product can be said to be a useful product, which can be shown as the atom economy
of the reaction
the higher the atomic economy value of a reaction, the smaller the waste/ byproducts produced, so that less energy is wasted
The general formula:
Atom economy = (mass of useful product : mass of all reactants/products) x 100
<em>or
</em>
Atom economy = (total formula masses of useful product : total formula masses of all reactants/products) x 100
So a reaction that only produces one product will have the highest atomic value, namely the reaction in option C
Final volume is 400 mL
<span>The moles in MgSO4 is 0.00788 </span><span>mL
</span>
The new concentration is 0.197