1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
3 years ago
12

How could you increase the gravitational potential energy between yourself and Earth?

Physics
1 answer:
Tamiku [17]3 years ago
5 0
Gravitational Potential Energy, GPE = mgh

Where m is your mass in kg, g is acceleration due to gravity = 9.8 m/s², and h is the height in m.

The only value that be controlled here is the height h.  The mass is constant, and acceleration due to gravity at that place is constant.

But h can be varied.

Hence to increase the gravitational potential energy between yourself and Earth is to increase the height h.

This can be done by climbing up a table, or climbing up a building through the stairs, or by using a lift.
You might be interested in
If the total charge on a rod of length 0.4 m is 2.6 nc, what is the magnitude of the electric field at a location 3 cm from the
Nana76 [90]
Let the rod be on the x-axes with endpoints -L/2 and L/2 and uniform charge density lambda (2.6nC/0.4m = 7.25 nC/m). 

The point then lies on the y-axes at d = 0.03 m. 

from symmetry, the field at that point will be ascending along the y-axes. 


A charge element at position x on the rod has distance sqrt(x^2 + d^2) to the point. 

Also, from the geometry, the component in the y-direction is d/sqrt(x^2+d^2) times the field strength. 


All in all, the infinitesimal field strength from the charge between x and x+dx is: 


dE = k lambda dx * 1/(x^2+d^2) * d/sqrt(x^2+d^2) 


Therefore, upon integration, 


E = k lambda d INTEGRAL{dx / (x^2 + d^2)^(3/2) } where x goes from -L/2 to L/2. 


This gives:


E = k lambda L / (d sqrt((L/2)^2 + d^2) ) 


But lambda L = Q, the total charge on the rod, so 


E = k Q / ( d * sqrt((L/2)^2 + d^2) )
3 0
3 years ago
The average acceleration is the ratio of which of the following quantities?
Novay_Z [31]
The answer will be : Δt
5 0
3 years ago
Write a hypothesis about the use of an object’s physical characteristics to determine its density. Use the format "if . . . then
Ad libitum [116K]

Answer:

If an object has a high density then the molicules making up that object are closly packed togeather. Because of this, objects with a higher density will have more mass than objects of the same size that have a lesser density.

7 0
3 years ago
Calculate the average velocity of a motor cycle that travels 72km/hr in<br> 20 seconds
olchik [2.2K]
Velocity =displacement
Change in time
D=72km/hr
Time=20s
But the S.I unit of velocity is m/s so you woul have to change 72km/hr to m/s

Changing 72km to m

1 kilometer=1000meters
Then, 72 kilometers =?

72•1000/1
=72000m

Changing 72hours to seconds

If 1 hour = 3600 seconds
Then 72 hours=?

72•3600/1

=259200 seconds


Velocity =displacement
Change in time

V= 72,000
259,2005
=0.028m/s
3 0
3 years ago
PLEASE HELP : What happens in obese mice? (Physiology)
irina1246 [14]

Answer and

Explanation:

The gut microbiota has recently emerged as an important, and previously unappreciated, player in host physiology (1). In particular, the gut microbiota contributes to a variety of physiological and pathophysiological processes in the host including immune disorders (2–4), atherosclerosis (5), irritable bowel syndrome (6, 7), blood pressure regulation (8), and chronic kidney disease (9, 10). Bacteria residing in the human gut are an important component of human physiology: the total wet weight of gut microbes in the human has been estimated to be 175 g–1.5 kg (11, 12), and the cells of the microbiota outnumber human cells by 10:1 (1). These bacteria interact with the immune system of the host (13), and secrete a variety of metabolites, which enter host circulation and can affect a variety of physiological parameters (8, 14), reviewed in Ref. (15). In fact, metabolites produced by the gut microbiota have been found to play key roles in renal disease (16), blood pressure regulation (8), and immune disorders (2–4). Therefore, just as we consider the genetic background of an animal or an individual to be an important contributing factor to their physiology, so too must we consider the genetic background of the microbiota associated with that animal.

Gut microbiota vary greatly amongst laboratory animals, and these differences result in notable differences in experimental results. Mice of the same strain from different vendors have different microbiota profiles (17), and similarly, the same mice housed at different institutions have different microbiota profiles (18, 19). Conversely, inoculating two different inbred mouse strains with the same gut bacteria leads to differences in host gene expression between the two mouse strains (20). Clearly, there is a complex interplay between the genetics of the microbiota and that of the host organism, which has only recently begun to be appreciated.

Go to:

Gut Microbiota as an Experimental Parameter

Examples in the literature have highlighted the important and unexpected ways in which gut microbiota can affect a variety of experimental parameters. In a series of studies, Vijay-Kumar et al. (13, 21) reported that although TLR5 null animals initially had a colitis phenotype, when these mice were “rederived” and their gut microbiota altered, the colitis phenotype was greatly attenuated, and instead the null animals exhibited metabolic syndrome. In addition, Lathrop et al. put forward a model by which T-cells are educated not only by self/non-self mechanisms, but also by microbiota-derived “non-self” antigens (22). Accordingly, they found that the presence or absence of microbiota determined whether T cells would induce colitis in mice. Finally, Yang et al. reported that when the same knockout mice were housed at two different institutions, they had markedly different microbiota profiles – and the mice at one institution (MIT) were quite susceptible to colitis, whereas mice at the other institution (MHH) failed to develop any significant pathology under the same conditions (19). Unequivocally, altering gut microbiota – even by housing animals at different institutions – can have dramatic effects on the phenotype observed.

Go to:

Gut Microbiota and Obesity and Diabetes

It is important to note that not only can microbiota affect host physiology, but the gut microbiota are not necessarily stable over time. Rather, gut microbiota can change or shift as a result of experimental manipulation (in animals) or changes in lifestyle or nutrition (in humans). It is now appreciated that there are “shifts” in microbiota that occur in obesity in mice, rats, and humans (23–26). In one study, Turnbaugh et al. (25) examined human female twin pairs concordant for leanness or obesity, and found that obesity was associated with phylum-level changes in microbiota.

7 0
3 years ago
Other questions:
  • Design a rectangular milk carton box of width ww, length ll, and height hh which holds 474 cm3474 cm3 of milk. The sides of the
    13·1 answer
  • What is the amount of heat, in calories, given off from a 5 g piece of aluminum when it cools from 80°C to 20°C? The specific he
    15·1 answer
  • Nicolo` works on weekends at a Slow Food Parlor. He fills a pitcher full of Cola, places it on the counter top and gives the 2.6
    12·1 answer
  • Is oil from diesel a nonrenewable resource or a renewable resource?
    15·1 answer
  • A force of 45.0 n accelerates a 5.0-kg block at 5.6 m/s2 along a horizontal surface what is the coefficient of friction?
    15·1 answer
  • A spring that has a spring constant of 440 N/m exerts a force of 88 N on a box. What is the displacement of the spring? 0.2 m 5
    15·2 answers
  • 009 10.0 points
    6·2 answers
  • I mostly know how to do these vector problems i’m just confused on how many decimal places i use
    15·2 answers
  • muscular movement involving the walls of the digestive tract that serve to mix materials and move them along the track
    12·1 answer
  • A 12,500 kg railroad freight car travels on a level track at a speed of 5.2 m/s. It collides and couples with a 22,600 kg second
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!