Answer:
Mass = 11.78 g of P₄
Explanation:
The balance chemical equation is as follow:
6 Sr + P4 → 2 Sr₃P₂
Step 1: Calculate moles of Sr as;
Moles = Mass / M/Mass
Moles = 50.0 g / 87.62 g/mol
Moles = 0.570 moles
Step 2: Find moles of P₄ as;
According to equation,
6 moles of Sr reacted with = 1 mole of P₄
So,
0.570 moles of Sr will react with = X moles of P₄
Solving for X,
X = 1 mol × 0.570 mol / 6 mol
X = 0.0952 mol of P₄
Step 3: Calculate mass of P₄ as,
Mass = Moles × M.Mass
Mass = 0.0952 mol × 123.89 g/mol
Mass = 11.78 g of P₄
Answer:
When hydrogen is passed over hot ferric oxide (FeO) hydrogen reacts with oxygen present in the compound and forms water (H2O) and pure Iron
Explanation:
Answer:
2.6 ×10^-42
Explanation:
From
∆G= -RTlnK
∆G= -237.2 KJmol-1 or -237.2×10^3 Jmol-1
R= 8.314 Jmol-1K-1
T= 25°C + 273= 298K
-237.2×10^3= 8.314 × 298 × ln K
ln K= -237.2×10^3/2477.572
K = 2.6 ×10^-42
Answer:
Here's what I get
Explanation:
(a) Intermediates
The three structures below represent one contributor to the resonance-stabilized intermediate, in which the lone pair electrons on the heteroatom are participating (the + charge on the heteroatoms do not show up very well).
(b) Relative Stabilities
The relative stabilities decrease in the order shown.
N is more basic than O, so NH₂ is the best electron donating group (EDG) and will best stabilize the positive charge in the ring. However, the lone pair electrons on the N in acetanilide are also involved in resonance with the carbonyl group, so they are not as available for stabilization of the ring.
(c) Relative reactivities
The relative reactivities would be
C₆H₅-NH₂ > C₆H₅-OCH₃ > C₆H₅-NHCOCH₃
Answer:
See explanation
Explanation:
When we talk about electrophilic substitution, we are talking about a substitution reaction in which the attacking agent is an electrophile. The electrophile attacks an electron rich area of a compound during the reaction.
The five membered furan ring is aromatic just as benzene. This aromatic structure is maintained during electrophilic substitution reaction. The attack of the electrophile generates a resonance stabilized intermediate whose canonical structures have been shown in the image attached.